weka.core package¶
weka.core.capabilities module¶
- class weka.core.capabilities.Capabilities(jobject=None, owner=None)¶
Bases:
JavaObject
Wrapper for Capabilities.
- attribute_capabilities()¶
Returns all the attribute capabilities.
- Returns:
attribute capabilities
- Return type:
- capabilities()¶
Returns all the capabilities.
- Returns:
all capabilities
- Return type:
list
- class_capabilities()¶
Returns all the class capabilities.
- Returns:
class capabilities
- Return type:
- dependencies()¶
Returns all the dependencies.
- Returns:
the dependency list
- Return type:
list
- disable(capability)¶
Disables the specified capability.
- Parameters:
capability (Capability) – the capability to disable
- disable_all()¶
Disables all capabilities.
- disable_all_attribute_dependencies()¶
Disables all attribute dependencies.
- disable_all_attributes()¶
Disables all attributes.
- disable_all_class_dependencies()¶
Disables all class dependencies.
- disable_all_classes()¶
Disables all classes.
- disable_dependency(capability)¶
Disables the dependency of the given capability Disabling NOMINAL_ATTRIBUTES also disables BINARY_ATTRIBUTES, UNARY_ATTRIBUTES and EMPTY_NOMINAL_ATTRIBUTES.
- Parameters:
capability (Capability) – the dependency to disable
- enable(capability)¶
enables the specified capability.
- Parameters:
capability (Capability) – the capability to enable
- enable_all()¶
enables all capabilities.
- enable_all_attribute_dependencies()¶
enables all attribute dependencies.
- enable_all_attributes()¶
enables all attributes.
- enable_all_class_dependencies()¶
enables all class dependencies.
- enable_all_classes()¶
enables all classes.
- enable_dependency(capability)¶
enables the dependency of the given capability enabling NOMINAL_ATTRIBUTES also enables BINARY_ATTRIBUTES, UNARY_ATTRIBUTES and EMPTY_NOMINAL_ATTRIBUTES.
- Parameters:
capability (Capability) – the dependency to enable
- classmethod for_instances(data, multi=None)¶
returns a Capabilities object specific for this data. The minimum number of instances is not set, the check for multi-instance data is optional.
- Parameters:
data (Instances) – the data to generate the capabilities for
multi (bool) – whether to check the structure, too
- Returns:
the generated capabilities
- Return type:
- handles(capability)¶
Returns whether the specified capability is set.
- Parameters:
capability (Capability) – the capability to check
- Returns:
whether the capability is set
- Return type:
bool
- has_dependencies()¶
Returns whether any dependencies are set.
- Returns:
whether any dependecies are set
- Return type:
bool
- has_dependency(capability)¶
Returns whether the specified dependency is set.
- Parameters:
capability (Capability) – the capability to check
- Returns:
whether the dependency is set
- Return type:
bool
- property min_instances¶
Returns the minimum number of instances that must be supported.
- Returns:
the minimum number
- Return type:
int
- other_capabilities()¶
Returns all other capabilities.
- Returns:
all other capabilities
- Return type:
- property owner¶
Returns the owner of these capabilities, if any.
- Returns:
the owner, can be None
- Return type:
- supports(capabilities)¶
Returns true if the currently set capabilities support at least all of the capabiliites of the given Capabilities object (checks only the enum!)
- Parameters:
capabilities (Capabilities) – the capabilities to check
- Returns:
whether the current capabilities support at least the specified ones
- Return type:
bool
- supports_maybe(capabilities)¶
Returns true if the currently set capabilities support (or have a dependency) at least all of the capabilities of the given Capabilities object (checks only the enum!)
- Parameters:
capabilities (Capabilities) – the capabilities to check
- Returns:
whether the current capabilities (potentially) support the specified ones
- Return type:
bool
- test_attribute(att, is_class=None, fail=False)¶
Tests whether the attribute meets the conditions.
- Parameters:
att (Attribute) – the Attribute to test
is_class (bool) – whether this attribute is the class attribute
fail (bool) – whether to fail with an exception in case the test fails
- Returns:
whether the attribute meets the conditions
- Return type:
bool
- test_instances(data, from_index=None, to_index=None, fail=False)¶
Tests whether the dataset meets the conditions.
- Parameters:
data (Instances) – the Instances to test
from_index (int) – the first attribute to include
to_index (int) – the last attribute to include
- Returns:
wether the dataset meets the requirements
- Return type:
bool
- class weka.core.capabilities.Capability(jobject=None, member=None)¶
Bases:
Enum
Wrapper for a Capability.
- property is_attribute¶
Returns whether this capability is an attribute.
- Returns:
whether it is an attribute
- Return type:
bool
- property is_attribute_capability¶
Returns whether this capability is an attribute capability.
- Returns:
whether it is an attribute capability
- Return type:
bool
- property is_class¶
Returns whether this capability is a class.
- Returns:
whether it is a class
- Return type:
bool
- property is_class_capability¶
Returns whether this capability is a class capability.
- Returns:
whether it is a class capability
- Return type:
bool
- property is_other_capability¶
Returns whether this capability is an other capability.
- Returns:
whether it is an other capability
- Return type:
bool
weka.core.classes module¶
- class weka.core.classes.AbstractParameter(classname=None, jobject=None, options=None)¶
Bases:
OptionHandler
Ancestor for all parameter classes used by SetupGenerator and MultiSearch.
- property prop¶
Returns the currently set property to apply the parameter to.
- Returns:
the property
- Return type:
str
- class weka.core.classes.Date(jobject=None, msecs=None)¶
Bases:
JavaObject
Wraps a java.util.Date object.
- property time¶
Returns the stored milli-seconds.
- Returns:
the milli-seconds
- Return type:
long
- class weka.core.classes.Enum(jobject=None, enum=None, member=None)¶
Bases:
JavaObject
Wrapper for Java enums.
- property name¶
Returns the name of the enum member.
- Returns:
the name
- Return type:
str
- property ordinal¶
Returns the ordinal of the enum member.
- Returns:
the ordinal
- Return type:
int
- property values¶
Returns list of all enum members.
- Returns:
all enum members
- Return type:
list
- class weka.core.classes.Environment(jobject=None)¶
Bases:
JavaObject
Wraps around weka.core.Environment
- add_variable(key, value, system_wide=False)¶
Adds the environment variable.
- Parameters:
key (str) – the name of the variable
value (str) – the value
system_wide (bool) – whether to add the variable system wide
- remove_variable(key)¶
Adds the environment variable.
- Parameters:
key (str) – the name of the variable
- classmethod system_wide()¶
Returns the system-wide environment.
;return: the environment :rtype: Environment
- variable_names()¶
Returns the names of all environment variables.
- Returns:
the names of the variables
- Return type:
list
- variable_value(key)¶
Returns the value of the environment variable.
- Parameters:
key (str) – the name of the variable
- Returns:
the variable value
- Return type:
str
- class weka.core.classes.JavaArray(jobject)¶
Bases:
JavaObject
Convenience wrapper around Java arrays.
- component_type()¶
Returns the classname of the elements.
- Returns:
the class of the elements
- Return type:
str
- classmethod new_array(classname, length)¶
Creates a new array with the given classname and length; initial values are null.
- Parameters:
classname (str) – the classname in Java notation (eg “weka.core.DenseInstance”)
length (int) – the length of the array
- Returns:
the Java array
- Return type:
JPype object
- class weka.core.classes.JavaArrayIterator(data)¶
Bases:
object
Iterator for elements in a Java array.
- class weka.core.classes.JavaObject(jobject)¶
Bases:
JSONObject
Basic Java object.
- classmethod check_type(jobject, intf_or_class)¶
Returns whether the object implements the specified interface or is a subclass.
- Parameters:
jobject (JPype object) – the Java object to check
intf_or_class (str) – the classname in Java notation (eg “weka.core.DenseInstance;”)
- Returns:
whether object implements interface or is subclass
- Return type:
bool
- property classname¶
Returns the Java classname in dot-notation.
- Returns:
the Java classname
- Return type:
str
- classmethod enforce_type(jobject, intf_or_class)¶
Raises an exception if the object does not implement the specified interface or is not a subclass.
- Parameters:
jobject (JPype object) – the Java object to check
intf_or_class (str) – the classname in Java notation (eg “weka.core.DenseInstance”)
- classmethod from_dict(d)¶
Restores an object state from a dictionary, used in de-JSONification.
- Parameters:
d (dict) – the object dictionary
- Returns:
the object
- Return type:
object
- get_property(path)¶
Attempts to get the value (jobject, a Java object) of the provided (bean) property path.
- Parameters:
path (str) – the property path, e.g., “filter” for a setFilter(…)/getFilter() method pair
- Returns:
the wrapped Java object
- Return type:
- property is_serializable¶
Returns true if the object is serialiable.
- Returns:
true if serializable
- Return type:
bool
- property jclass¶
Returns the Java class object of the underlying Java object.
- Returns:
the Java class
- Return type:
JClass
- property jwrapper¶
DEPRECATED: use self.jobject directly, as it is already wrapped.
Returns the encapsulated Java object, giving access to methods using dot notation.
- Returns:
the JPype object
- classmethod new_instance(classname, options=None)¶
Creates a new object from the given classname using the default constructor, None in case of error.
- Parameters:
classname (str) – the classname in Java notation (eg “weka.core.DenseInstance”)
options (list) – the list of options to use, ignored if None
- Returns:
the Java object
- Return type:
JPype object
- set_property(path, jobject)¶
Attempts to set the value (jobject, a Java object) of the provided (bean) property path.
- Parameters:
path (str) – the property path, e.g., “filter” for a setFilter(…)/getFilter() method pair
jobject (JPype object) – the Java object to set; if instance of JavaObject class, the jobject member is automatically used
- to_dict()¶
Returns a dictionary that represents this object, to be used for JSONification.
- Returns:
the object dictionary
- Return type:
dict
- class weka.core.classes.ListParameter(jobject=None, options=None)¶
Bases:
AbstractParameter
Parameter using a predefined list of values, used by SetupGenerator and MultiSearch.
- property values¶
Returns the currently set values.
- Returns:
the list of values (strings)
- Return type:
list
- class weka.core.classes.MathParameter(jobject=None, options=None)¶
Bases:
AbstractParameter
Parameter using a math expression for generating values, used by SetupGenerator and MultiSearch.
- property base¶
Returns the currently set base value.
- Returns:
the base
- Return type:
float
- property expression¶
Returns the currently set expression.
- Returns:
the expression
- Return type:
str
- property maximum¶
Returns the currently set maximum value.
- Returns:
the maximum
- Return type:
float
- property minimum¶
Returns the currently set minimum value.
- Returns:
the minimum
- Return type:
float
- property step¶
Returns the currently set step value.
- Returns:
the step
- Return type:
float
- class weka.core.classes.Option(jobject)¶
Bases:
JavaObject
Wrapper for the weka.core.Option class.
- property description¶
Returns the description of the option.
- Returns:
the description
- Return type:
str
- property name¶
Returns the name of the option.
- Returns:
the name
- Return type:
str
- property num_arguments¶
Returns the synopsis of the option.
- Returns:
the synopsis
- Return type:
str
- property synopsis¶
Returns the synopsis of the option.
- Returns:
the synopsis
- Return type:
str
- class weka.core.classes.OptionHandler(jobject, options=None)¶
Bases:
JavaObject
,Configurable
Ancestor for option-handling classes. Classes should implement the weka.core.OptionHandler interface to have any effect.
- description()¶
Returns a description of the object.
- Returns:
the description
- Return type:
str
- classmethod from_dict(d)¶
Restores an object state from a dictionary, used in de-JSONification.
- Parameters:
d (dict) – the object dictionary
- Returns:
the object
- Return type:
object
- global_info()¶
Returns the globalInfo() result, None if not available.
- Rtypes:
str
- property options¶
Obtains the currently set options as list.
- Returns:
the list of options
- Return type:
list
- to_commandline()¶
Generates a commandline string from the JavaObject instance.
- Returns:
the commandline string
- Return type:
str
- to_dict()¶
Returns a dictionary that represents this object, to be used for JSONification.
- Returns:
the object dictionary
- Return type:
dict
- to_help(title=True, description=True, options=True, use_headers=True, separator='')¶
Returns a string that contains the ‘global_info’ text and the options.
- Parameters:
title (bool) – whether to output a title
description (bool) – whether to output the description
options (bool) – whether to output the options
use_headers (bool) – whether to output headers, describing the sections
separator (str) – the separator line to use between sections
- Returns:
the generated help string
- Return type:
str
- class weka.core.classes.Random(seed)¶
Bases:
JavaObject
Wrapper for the java.util.Random class.
- next_double()¶
Next random double.
- Returns:
the next random double
- Return type:
double
- next_int(n=None)¶
Next random integer. if n is provided, then between 0 and n-1.
- Parameters:
n (int) – the upper limit (minus 1) for the random integer
- Returns:
the next random integer
- Return type:
int
- class weka.core.classes.Range(jobject=None, ranges=None)¶
Bases:
JavaObject
Wrapper for a Weka Range object.
- property invert¶
Returns whether the range is inverted.
- Returns:
true if inverted
- Return type:
bool
- property ranges¶
Returns the string range.
- Returns:
the string range of 1-based indices
- Return type:
str
- selection()¶
Returns the selection list.
- Returns:
the list of 0-based integer indices
- Return type:
list
- upper(upper)¶
Sets the upper limit.
- Parameters:
upper (int) – the upper limit
- class weka.core.classes.SelectedTag(jobject=None, tag_id=None, tag_text=None, tags=None)¶
Bases:
JavaObject
Wrapper for the weka.core.SelectedTag class.
- property tags¶
Returns the associated tags.
- Returns:
the list of Tag objects
- Return type:
list
- class weka.core.classes.SetupGenerator(jobject=None, options=None)¶
Bases:
OptionHandler
Allows generation of large number of setups using parameter setups.
- property base_object¶
Returns the base object to apply the setups to.
- Returns:
the base object
- Return type:
- property parameters¶
Returns the list of currently set search parameters.
- Returns:
the list of AbstractSearchParameter objects
- Return type:
list
- setups()¶
Generates and returns all the setups according to the parameter search space.
- Returns:
the list of configured objects (of type JavaObject)
- Return type:
list
- class weka.core.classes.SingleIndex(jobject=None, index=None)¶
Bases:
JavaObject
Wrapper for a Weka SingleIndex object.
- index()¶
Returns the integer index.
- Returns:
the 0-based integer index
- Return type:
int
- property single_index¶
Returns the string index.
- Returns:
the 1-based string index
- Return type:
str
- upper(upper)¶
Sets the upper limit.
- Parameters:
upper (int) – the upper limit
- class weka.core.classes.Tag(jobject=None, ident=None, ident_str='', readable='', uppercase=True)¶
Bases:
JavaObject
Wrapper for the weka.core.Tag class.
- property ident¶
Returns the current integer ID of the tag.
- Returns:
the integer ID
- Return type:
int
- property identstr¶
Returns the current ID string.
- Returns:
the ID string
- Return type:
str
- property readable¶
Returns the ‘human readable’ string.
- Returns:
the readable string
- Return type:
str
- class weka.core.classes.Tags(jobject=None, tags=None)¶
Bases:
JavaObject
Wrapper for an array of weka.core.Tag objects.
- find(name)¶
Returns the Tag that matches the name.
- Parameters:
name (str) – the string representation of the tag
- Returns:
the tag, None if not found
- Return type:
- classmethod get_object_tags(javaobject, methodname)¶
Instantiates the Tag array obtained from the object using the specified method name.
Example: cls = Classifier(classname=”weka.classifiers.meta.MultiSearch”) tags = Tags.get_object_tags(cls, “getMetricsTags”)
- Parameters:
javaobject (JavaObject) – the javaobject to obtain the tags from
methodname (str) – the method name returning the Tag array
- Returns:
the Tags objects
- Return type:
- classmethod get_tags(classname, field)¶
Instantiates the Tag array located in the specified class with the given field name.
Example: tags = Tags.get_tags(“weka.classifiers.functions.SMO”, “TAGS_FILTER”)
- Parameters:
classname (str) – the classname in which the tags reside
field (str) – the field name of the Tag array
- Returns:
the Tags objects
- Return type:
- weka.core.classes.backquote(s)¶
Backquotes the string.
- Parameters:
s (str) – the string to process
- Returns:
the backquoted string
- Return type:
str
- weka.core.classes.complete_classname(classname)¶
Attempts to complete a partial classname like ‘.J48’ and returns the full classname if a single match was found, otherwise an exception is raised.
- Parameters:
classname (str) – the partial classname to expand
- Returns:
the full classname
- Return type:
str
- weka.core.classes.deepcopy(obj)¶
Creates a deep copy of the JavaObject (or derived class) or JPype object.
- Parameters:
obj (object) – the object to create a copy of
- Returns:
the copy, None if failed to copy
- Return type:
object
- weka.core.classes.from_byte_array(array)¶
Deserializes Java objects from the numpy array.
- Parameters:
array (ndarray) – the numpy array to deserialize the Java objects from
- Returns:
the list of deserialized JPype object instances
- Return type:
list
- weka.core.classes.from_commandline(cmdline, classname=None)¶
Creates an OptionHandler based on the provided commandline string.
- Parameters:
cmdline (str) – the commandline string to use
classname (str) – the classname of the wrapper to return other than OptionHandler (in dot-notation)
- Returns:
the generated option handler instance
- Return type:
object
- weka.core.classes.get_classname(obj)¶
Returns the classname of the JPype object, Python class or object.
- Parameters:
obj (object) – the java object or Python class/object to get the classname for
- Returns:
the classname
- Return type:
str
- weka.core.classes.get_enum(classname, enm)¶
Returns the instance of the enum.
- Parameters:
classname (str) – the classname of the enum
enm (str) – the name of the enum element to return
- Returns:
the enum instance
- Return type:
JPype object
- weka.core.classes.get_jclass(classname)¶
Returns the Java class object associated with the dot-notation classname. Also supports the Java primitives: boolean, byte, short, int, long, float, double, char.
- Parameters:
classname (str) – the classname
- Returns:
the class object
- Return type:
JPype object
- weka.core.classes.get_static_field(classname, fieldname)¶
Returns the Java object associated with the static field of the specified class.
- Parameters:
classname (str) – the classname of the class to get the field from
fieldname (str) – the name of the field to retriev
- Returns:
the object
- Return type:
JPype object
- weka.core.classes.help_for(classname, title=True, description=True, options=True, use_headers=True, separator='')¶
Generates a help screen for the specified class.
- Parameters:
classname (str) – the class to get the help screen for, must implement the OptionHandler interface
title (bool) – whether to output a title
description (bool) – whether to output the description
options (bool) – whether to output the options
use_headers (bool) – whether to output headers, describing the sections
separator (str) – the separator line to use between sections
- Returns:
the help screen, None if not available
- Return type:
str
- weka.core.classes.is_array(obj)¶
Checks whether the Java object is an array.
- Parameters:
obj (JPype object) – the Java object to check
- Returns:
whether the object is an array
- Return type:
bool
- weka.core.classes.is_instance_of(obj, class_or_intf_name)¶
Checks whether the Java object implements the specified interface or is a subclass of the superclass.
- Parameters:
obj (JPype object) – the Java object to check
class_or_intf_name (str) – the superclass or interface to check, dot notation or with forward slashes
- Returns:
true if either implements interface or subclass of superclass
- Return type:
bool
- weka.core.classes.join_options(options)¶
Turns the list of options back into a single commandline string.
- Parameters:
options (list) – the list of options to process
- Returns:
the combined options
- Return type:
str
- weka.core.classes.list_property_names(obj)¶
Lists the property names (Bean properties, ie read/write method pair) of the Java object.
- Parameters:
obj (JPype object or JavaObject) – the object to inspect
- Returns:
the list of property names
- Return type:
list
- weka.core.classes.load_suggestions()¶
Loads the class/package suggestions, if necessary.
- weka.core.classes.main()¶
Runs a classifier from the command-line. Calls JVM start/stop automatically. Use -h to see all options.
- weka.core.classes.new_array(classname, length)¶
Creates a new array of the specified class and length.
- Parameters:
classname (str) – the type of the array
length (int) – the length of the array
- Returns:
the generated array
- weka.core.classes.new_instance(classname)¶
Instantiates an object of the specified class. Does not raise an Exception if it fails to do so (opposed to JavaObject.new_array).
- Parameters:
classname (str) – the name of the class to instantiate
- Returns:
the object, None if failed to instantiate
- Return type:
JPype object
- weka.core.classes.quote(s)¶
Quotes the string if necessary.
- Parameters:
s (str) – the string to process
- Returns:
the quoted string
- Return type:
str
- weka.core.classes.serialization_read(filename)¶
Reads the serialized object from disk. Caller must wrap object in appropriate Python wrapper class.
- Parameters:
filename (str) – the file with the serialized object
- Returns:
the JPype object
- Return type:
JPype object
- weka.core.classes.serialization_read_all(filename)¶
Reads the serialized objects from disk. Caller must wrap objects in appropriate Python wrapper classes.
- Parameters:
filename (str) – the file with the serialized objects
- Returns:
the list of JB_OBjects
- Return type:
list
- weka.core.classes.serialization_write(filename, jobject)¶
Serializes the object to disk. JavaObject instances get automatically unwrapped.
- Parameters:
filename (str) – the file to serialize the object to
jobject (JPype object or JavaObject) – the object to serialize
- weka.core.classes.serialization_write_all(filename, jobjects)¶
Serializes the list of objects to disk. JavaObject instances get automatically unwrapped.
- Parameters:
filename (str) – the file to serialize the object to
jobjects (list) – the list of objects to serialize
- weka.core.classes.split_commandline(cmdline)¶
Splits the commandline string into classname and options list.
- Parameters:
cmdline (str) – the commandline string to split
- Returns:
the tuple of classname and options list
- Return type:
tuple
- weka.core.classes.split_options(cmdline)¶
Splits the commandline into a list of options.
- Parameters:
cmdline (str) – the commandline string to split into individual options
- Returns:
the split list of commandline options
- Return type:
list
- weka.core.classes.suggest_package(name, exact=False)¶
Suggests package(s) for the given name (classname, package name). Matching can be either exact or just a substring.
- Parameters:
name (str) – the name to look for
exact (bool) – whether to perform exact matching or substring matching
- Returns:
list of matching package names
- Return type:
list
- weka.core.classes.suggestions = None¶
dictionary for class -> package relation
- weka.core.classes.to_byte_array(jobjects)¶
Serializes the list of objects into a numpy array.
- Parameters:
jobjects (list) – the list of objects to serialize
- Returns:
the numpy array
- Return type:
ndarray
- weka.core.classes.to_commandline(optionhandler)¶
Generates a commandline string from the OptionHandler instance.
- Parameters:
optionhandler (OptionHandler) – the OptionHandler instance to turn into a commandline
- Returns:
the commandline string
- Return type:
str
- weka.core.classes.unbackquote(s)¶
Un-backquotes the string.
- Parameters:
s (str) – the string to process
- Returns:
the un-backquoted string
- Return type:
str
- weka.core.classes.unquote(s)¶
Un-quotes the string.
- Parameters:
s (str) – the string to process
- Returns:
the un-quoted string
- Return type:
str
weka.core.converters module¶
- class weka.core.converters.IncrementalLoaderIterator(loader, structure)¶
Bases:
object
Iterator for dataset rows when loarding incrementally.
- class weka.core.converters.Loader(classname='weka.core.converters.ArffLoader', jobject=None, options=None)¶
Bases:
OptionHandler
Wrapper class for Loaders.
- load_file(dfile, incremental=False, class_index=None)¶
Loads the specified file and returns the Instances object. In case of incremental loading, only the structure.
- Parameters:
dfile (str) – the file to load
incremental (bool) – whether to load the dataset incrementally
class_index (str) – the class index string to use (‘first’, ‘second’, ‘third’, ‘last-2’, ‘last-1’, ‘last’ or 1-based index)
- Returns:
the full dataset or the header (if incremental)
- Return type:
- Raises:
Exception – if the file does not exist
- load_url(url, incremental=False)¶
Loads the specified URL and returns the Instances object. In case of incremental loading, only the structure.
- Parameters:
url (str) – the URL to load the data from
incremental (bool) – whether to load the dataset incrementally
- Returns:
the full dataset or the header (if incremental)
- Return type:
- class weka.core.converters.Saver(classname='weka.core.converters.ArffSaver', jobject=None, options=None)¶
Bases:
OptionHandler
Wrapper class for Savers.
- capabilities()¶
Returns the capabilities of the saver.
- Returns:
the capabilities
- Return type:
- class weka.core.converters.TextDirectoryLoader(jobject=None, options=None)¶
Bases:
OptionHandler
Wrapper class for TextDirectoryLoader.
- weka.core.converters.load_any_file(filename, class_index=None)¶
Determines a Loader based on the the file extension. If successful, loads the full dataset and returns it.
- Parameters:
filename (str) – the name of the file to load
class_index (str) – the class index string to use (‘first’, ‘second’, ‘third’, ‘last-2’, ‘last-1’, ‘last’ or 1-based index)
- Returns:
the
- Return type:
- weka.core.converters.load_csv_file(filename, dialect='excel', delimiter=',', quotechar='"', num_cols=None, nom_cols=None)¶
Loads a CSV file using the Python csv module and then converts it to an Instances object. Better at reading CSV files than Weka’s built-in CSVLoader. String attributes can be converted to nominal ones using the weka.filters.unsupervised.attribute.StringToNominal filter.
- Parameters:
filename (str) – the name of the CSV file to load
dialect (str) – the type of CSV file to load
delimiter (str) – the field delimiter
quotechar (str) – the character used for quoting cells
quoting – how the quoting works
num_cols (list) – the list of 0-based column indices that are numeric, default for cols is str
nom_cols (list) – the list of 0-based column indices that are nominal, default for cols is str
- weka.core.converters.loader_for_file(filename)¶
Returns a Loader that can load the specified file, based on the file extension. None if failed to determine.
- Parameters:
filename (str) – the filename to get the loader for
- Returns:
the assoicated loader instance or None if none found
- Return type:
- weka.core.converters.ndarray_to_instances(array, relation, att_template='Att-#', att_list=None)¶
Converts the numpy matrix into an Instances object and returns it.
- Parameters:
array (numpy.darray) – the numpy ndarray to convert
relation (str) – the name of the dataset
att_template (str) – the prefix to use for the attribute names, “#” is the 1-based index, “!” is the 0-based index, “@” the relation name
att_list (list) – the list of attribute names to use
- Returns:
the generated instances object
- Return type:
weka.core.database module¶
- class weka.core.database.DatabaseUtils(jobject=None, options=None)¶
Bases:
OptionHandler
Wrapper class for weka.experiment.DatabaseUtils.
- property db_url¶
Obtains the currently set database URL.
- Returns:
the database URL
- Return type:
str
- property password¶
Obtains the currently set database password.
- Returns:
the database password
- Return type:
str
- property user¶
Obtains the currently set database user.
- Returns:
the database user
- Return type:
str
- class weka.core.database.InstanceQuery(jobject=None, options=None)¶
Bases:
DatabaseUtils
Wrapper class for weka.experiment.InstanceQuery.
- property custom_properties¶
Obtains the currently set custom properties file.
- Returns:
the custom properties file
- Return type:
str
- property query¶
Obtains the current SQL query to execute.
- Returns:
the SQL query
- Return type:
str
- retrieve_instances(query=None)¶
Executes either the supplied query or the one set via options (or the ‘query’ property).
- Parameters:
query (str) – query to execute if not the currently set one
- Returns:
the generated data
- Return type:
- property sparse_data¶
Obtains the whether sparse data is returned or not.
- Returns:
whether sparse data is generated
- Return type:
bool
weka.core.dataset module¶
- class weka.core.dataset.Attribute(jobject)¶
Bases:
JavaObject
Wrapper class for weka.core.Attribute.
- add_relation(instances)¶
Adds the relation value, returns the index.
- Parameters:
instances (Instances) – the Instances object to add
- Returns:
the index
- Return type:
int
- add_string_value(s)¶
Adds the string value, returns the index.
- Parameters:
s (str) – the string to add
- Returns:
the index
- Return type:
int
- copy(name=None)¶
Creates a copy of this attribute.
- Parameters:
name (str) – the new name, uses the old one if None
- Returns:
the copy of the attribute
- Return type:
- classmethod create_date(name, formt="yyyy-MM-dd'T'HH:mm:ss")¶
Creates a date attribute.
- Parameters:
name (str) – the name of the attribute
formt (str) – the date format, see Javadoc for java.text.SimpleDateFormat
- classmethod create_nominal(name, labels)¶
Creates a nominal attribute.
- Parameters:
name (str) – the name of the attribute
labels (list) – the list of string labels to use
- classmethod create_numeric(name)¶
Creates a numeric attribute.
- Parameters:
name (str) – the name of the attribute
- classmethod create_relational(name, inst)¶
Creates a relational attribute.
- Parameters:
name (str) – the name of the attribute
inst (Instances) – the structure of the relational attribute
- classmethod create_string(name)¶
Creates a string attribute.
- Parameters:
name (str) – the name of the attribute
- property date_format¶
Returns the format of this data attribute. See java.text.SimpleDateFormat Javadoc.
- Returns:
the format string
- Return type:
str
- equals(att)¶
Checks whether this attributes is the same as the provided one.
- Parameters:
att (Attribute) – the Attribute to check against
- Returns:
whether the same
- Return type:
bool
- equals_msg(att)¶
Checks whether this attributes is the same as the provided one. Returns None if the same, otherwise error message.
- Parameters:
att (Attribute) – the Attribute to check against
- Returns:
None if the same, otherwise error message
- Return type:
str
- property index¶
Returns the index of this attribute.
- Returns:
the index
- Return type:
int
- index_of(label)¶
Returns the index of the label in this attribute.
- Parameters:
label (str) – the string label to get the index for
- Returns:
the 0-based index
- Return type:
int
- property is_averagable¶
Returns whether the attribute is averagable.
- Returns:
whether averagable
- Return type:
bool
- property is_date¶
Returns whether the attribute is a date one.
- Returns:
whether date attribute
- Return type:
bool
- is_in_range(value)¶
Checks whether the value is within the bounds of the numeric attribute.
- Parameters:
value (float) – the numeric value to check
- Returns:
whether between lower and upper bound
- Return type:
bool
- property is_nominal¶
Returns whether the attribute is a nominal one.
- Returns:
whether nominal attribute
- Return type:
bool
- property is_numeric¶
Returns whether the attribute is a numeric one (date or numeric).
- Returns:
whether numeric attribute
- Return type:
bool
- property is_relation_valued¶
Returns whether the attribute is a relation valued one.
- Returns:
whether relation valued attribute
- Return type:
bool
- property is_string¶
Returns whether the attribute is a string attribute.
- Returns:
whether string attribute
- Return type:
bool
- property lower_numeric_bound¶
Returns the lower numeric bound of the numeric attribute.
- Returns:
the lower bound
- Return type:
float
- property name¶
Returns the name of the attribute.
- Returns:
the name
- Return type:
str
- property num_values¶
Returns the number of labels.
- Returns:
the number of labels
- Return type:
int
- property ordering¶
Returns the ordering of the attribute.
- Returns:
the ordering (ORDERING_SYMBOLIC, ORDERING_ORDERED, ORDERING_MODULO)
- Return type:
int
- parse_date(s)¶
Parses the date string and returns the internal format value.
- Parameters:
s (str) – the date string
- Returns:
the internal format
- Return type:
float
- property type¶
Returns the type of the attribute. See weka.core.Attribute Javadoc.
- Returns:
the type
- Return type:
int
- type_str(short=False)¶
Returns the type of the attribute as string.
- Returns:
the type
- Return type:
str
- property upper_numeric_bound¶
Returns the upper numeric bound of the numeric attribute.
- Returns:
the upper bound
- Return type:
float
- value(index)¶
Returns the label for the index.
- Parameters:
index (int) – the 0-based index of the label to return
- Returns:
the label
- Return type:
str
- property values¶
Returns the labels, strings or relation-values.
- Returns:
all the values, None if not NOMINAL, STRING, or RELATION
- Return type:
list
- property weight¶
Returns the weight of the attribute.
- Returns:
the weight
- Return type:
float
- class weka.core.dataset.AttributeIterator(data)¶
Bases:
object
Iterator for attributes in an Instances object.
- class weka.core.dataset.AttributeStats(jobject)¶
Bases:
JavaObject
Container for attribute statistics.
- property distinct_count¶
The number of distinct values.
- Returns:
The number of distinct values
- Return type:
int
- property int_count¶
The number of int-like values.
- Returns:
The number of int-like values
- Return type:
int
- property missing_count¶
The number of missing values.
- Returns:
The number of missing values
- Return type:
int
- property nominal_counts¶
Counts of each nominal value.
- Returns:
Counts of each nominal value
- Return type:
ndarray
- property nominal_weights¶
Weight mass for each nominal value.
- Returns:
Weight mass for each nominal value
- Return type:
ndarray
- property numeric_stats¶
Stats on numeric value distributions.
- Returns:
Stats on numeric value distributions
- Return type:
NumericStats
- property total_count¶
The total number of values.
- Returns:
The total number of values
- Return type:
int
- property unique_count¶
The number of values that only appear once.
- Returns:
The number of values that only appear once
- Return type:
int
- class weka.core.dataset.Instance(jobject)¶
Bases:
JavaObject
Wrapper class for weka.core.Instance.
- property class_attribute¶
Returns the currently set class attribute.
- Returns:
the class attribute
- Return type:
- property class_index¶
Returns the currently set class index.
- Returns:
the class index, -1 if not set
- Return type:
int
- classmethod create_instance(values, classname='weka.core.DenseInstance', weight=1.0)¶
Creates a new instance.
- Parameters:
values (ndarray or list) – the float values (internal format) to use, numpy array or list.
classname (str) – the classname of the instance (eg weka.core.DenseInstance).
weight (float) – the weight of the instance
- classmethod create_sparse_instance(values, max_values, classname='weka.core.SparseInstance', weight=1.0)¶
Creates a new sparse instance.
- Parameters:
values (list) – the list of tuples (0-based index and internal format float). The indices of the tuples must be in ascending order and “max_values” must be set to the maximum number of attributes in the dataset.
max_values (int) – the maximum number of attributes
classname (str) – the classname of the instance (eg weka.core.SparseInstance).
weight (float) – the weight of the instance
- property dataset¶
Returns the dataset that this instance belongs to.
- Returns:
the dataset or None if no dataset set
- Return type:
- get_relational_value(index)¶
Returns the relational value at the specified position (0-based).
- Parameters:
index (int) – the 0-based index of the inernal value
- Returns:
the relational value
- Return type:
- get_string_value(index)¶
Returns the string value at the specified position (0-based).
- Parameters:
index (int) – the 0-based index of the inernal value
- Returns:
the string value
- Return type:
str
- get_value(index)¶
Returns the internal value at the specified position (0-based).
- Parameters:
index (int) – the 0-based index of the inernal value
- Returns:
the internal value
- Return type:
float
- has_class()¶
Returns whether a class attribute is set (convenience method).
- Returns:
whether a class attribute is currently set
- Return type:
bool
- has_missing()¶
Returns whether at least one attribute has a missing value.
- Returns:
whether at least one value is missing
- Return type:
bool
- is_missing(index)¶
Returns whether the attribute at the specified index is missing.
- Parameters:
index (int) – the 0-based index of the attribute
- Returns:
whether the value is missing
- Return type:
bool
- classmethod missing_value()¶
Returns the numeric value that represents a missing value in Weka (NaN).
- Returns:
missing value
- Return type:
float
- property num_attributes¶
Returns the number of attributes.
- Returns:
the numer of attributes
- Return type:
int
- property num_classes¶
Returns the number of class labels.
- Returns:
the numer of class labels
- Return type:
int
- set_missing(index)¶
Sets the attribute at the specified index to missing.
- Parameters:
index (int) – the 0-based index of the attribute
- set_string_value(index, s)¶
Sets the string value at the specified position (0-based).
- Parameters:
index (int) – the 0-based index of the inernal value
s (str) – the string value
- set_value(index, value)¶
Sets the internal value at the specified position (0-based).
- Parameters:
index (int) – the 0-based index of the attribute
value (float) – the internal float value to set
- to_numpy(internal=False)¶
Turns the instance into a numpy matrix.
- Parameters:
internal (bool) – whether to return the internal format
- Returns:
the dataset as matrix with single row
- Return type:
np.ndarray
- property values¶
Returns the internal values of this instance.
- Returns:
the values as numpy array
- Return type:
ndarray
- property weight¶
Returns the currently set weight.
- Returns:
the weight
- Return type:
float
- class weka.core.dataset.InstanceIterator(data)¶
Bases:
object
Iterator for rows in an Instances object.
- class weka.core.dataset.InstanceValueIterator(data)¶
Bases:
object
Iterator for values in an Instance object.
- class weka.core.dataset.Instances(jobject)¶
Bases:
JavaObject
Wrapper class for weka.core.Instances.
- add_instance(inst, index=None)¶
Adds the specified instance to the dataset.
- Parameters:
inst (Instance) – the Instance to add
index (int) – the 0-based index where to add the Instance
- classmethod append_instances(inst1, inst2)¶
Merges the two datasets (one-after-the-other). Throws an exception if the datasets aren’t compatible.
- attribute(index)¶
Returns the specified attribute.
- Parameters:
index (int) – the 0-based index of the attribute
- Returns:
the attribute
- Return type:
- attribute_by_name(name)¶
Returns the specified attribute, None if not found.
- Parameters:
name (str) – the name of the attribute
- Returns:
the attribute or None
- Return type:
- attribute_names()¶
Returns a list of all the attribute names.
- Returns:
list of attribute names
- Return type:
list
- attribute_stats(index)¶
Returns the specified attribute statistics.
- Parameters:
index (int) – the 0-based index of the attribute
- Returns:
the attribute statistics
- Return type:
- attributes()¶
Returns an iterator over the attributes.
- property class_attribute¶
Returns the currently set class attribute.
- Returns:
the class attribute
- Return type:
- property class_index¶
Returns the currently set class index (0-based).
- Returns:
the class index, -1 if not set
- Return type:
int
- class_is_first()¶
Sets the first attribute as class attribute (convenience method).
- class_is_last()¶
Sets the last attribute as class attribute (convenience method).
- compactify()¶
Compactifies the set of instances.
- classmethod copy_instances(dataset, from_row=None, num_rows=None)¶
Creates a copy of the Instances. If either from_row or num_rows are None, then all of the data is being copied.
- copy_structure()¶
Returns a copy of the dataset structure.
- Returns:
the structure of the dataset
- Return type:
- classmethod create_instances(name, atts, capacity)¶
Creates a new Instances.
- cv_splits(folds=10, rnd=None, stratify=True)¶
Generates a list of train/test pairs used in cross-validation. Creates a copy of the dataset beforehand when randomizing.
- Parameters:
folds (int) – the number of folds to use, >= 2
rnd (Random) – the random number generator to use for randomization, skips randomization if None
stratify (bool) – whether to stratify the data after randomization
- Returns:
the list of train/test split tuples
- Return type:
list
- delete(index=None)¶
Removes either the specified Instance or all Instance objects.
- Parameters:
index (int) – the 0-based index of the instance to remove
- delete_attribute(index)¶
Deletes an attribute at the given position.
- Parameters:
index (int) – the 0-based index of the attribute to remove
- delete_attribute_type(typ)¶
Deletes all attributes of the given type in the dataset.
- Parameters:
typ (int) – the attribute type to remove, see weka.core.Attribute Javadoc
- delete_first_attribute()¶
Deletes the first attribute.
- delete_last_attribute()¶
Deletes the last attribute.
- delete_with_missing(index)¶
Deletes all rows that have a missing value at the specified attribute index.
- Parameters:
index (int) – the attribute index to check for missing attributes
- equal_headers(inst)¶
Compares this dataset against the given one in terms of attributes.
- Parameters:
inst (Instances) – the dataset to compare against
- Returns:
None if the same, otherwise an error message
- Return type:
str
- get_instance(index)¶
Returns the Instance object at the specified location.
- Parameters:
index (int) – the 0-based index of the instance
- Returns:
the instance
- Return type:
- has_class()¶
Returns whether a class attribute is set (convenience method).
- Returns:
whether a class attribute is currently set
- Return type:
bool
- insert_attribute(att, index)¶
Inserts the attribute at the specified location.
- Parameters:
att (Attribute) – the attribute to insert
index (int) – the index to insert the attribute at
- classmethod merge_instances(inst1, inst2)¶
Merges the two datasets (side-by-side).
- no_class()¶
Unsets the class attribute (convenience method).
- property num_attributes¶
Returns the number of attributes.
- Returns:
the number of attributes
- Return type:
int
- property num_instances¶
Returns the number of instances.
- Returns:
the number of instances
- Return type:
int
- randomize(random)¶
Randomizes the dataset using the random number generator.
- Parameters:
random (Random) – the random number generator to use
- property relationname¶
Returns the name of the dataset.
- Returns:
the name
- Return type:
str
- set_instance(index, inst)¶
Sets the Instance at the specified location in the dataset.
- sort(index)¶
Sorts the dataset using the specified attribute index.
- Parameters:
index (int) – the index of the attribute
- stratify(folds)¶
Stratifies the data after randomization for nominal class attributes.
- Parameters:
folds (int) – the number of folds to perform the stratification for
- subset(col_range=None, col_names=None, invert_cols=False, row_range=None, invert_rows=False, keep_relationame=False)¶
Returns a subset of attributes/rows of the Instances object. If neither attributes nor rows have been specified a copy of the dataset gets returned. The invers of the specified cols/rows can be returned by setting invert_cols and/or invert_rows to True. The method uses the weka.filters.unsupervised.attribute.Remove and weka.filters.unsupervised.instance.RemoveRange filters under the hood.
- Parameters:
col_range (str) – the subset of attributes to return (eg ‘1-3,7-12,67-last’), None for all
col_names (list) – the list of attributes to return (list of names; case-sensitive), takes precedence over col_range
invert_cols (bool) – whether to invert the returned attributes
row_range (str) – the subset of rows to return (eg ‘1-3,7-12,67-last’), None for all
invert_rows (bool) – whether to invert the returned rows
keep_relationame (bool) – whether to keep the original relation name
- Returns:
the subset
- Return type:
- classmethod summary(inst)¶
Generates a summary of the dataset.
- Parameters:
inst (Instances) – the dataset
- Returns:
the summary
- Return type:
str
- classmethod template_instances(dataset, capacity=0)¶
Uses the Instances as template to create an empty dataset.
- test_cv(num_folds, fold)¶
Generates a test fold for cross-validation.
- Parameters:
num_folds (int) – the number of folds of cross-validation, eg 10
fold (int) – the current fold (0-based)
- Returns:
the training fold
- Return type:
- to_numpy(internal=False)¶
Turns the dataset into a numpy matrix.
- Parameters:
internal (bool) – whether to return the internal format
- Returns:
the dataset as matrix
- Return type:
np.ndarray
- train_cv(num_folds, fold, random=None)¶
Generates a training fold for cross-validation.
- train_test_split(percentage, rnd=None)¶
Generates a train/test split. Creates a copy of the dataset first before applying randomization.
- Parameters:
percentage (double) – the percentage split to use (amount to use for training; 0-100)
rnd (Random) – the random number generator to use, if None the order gets preserved
- Returns:
the train/test splits
- Return type:
tuple
- values(index)¶
Returns the internal values of this attribute from all the instance objects.
- Returns:
the values as numpy array
- Return type:
np.ndarray
- class weka.core.dataset.Stats(jobject)¶
Bases:
JavaObject
Container for numeric attribute stats.
- property count¶
The number of values seen.
- Returns:
The number of values seen
- Return type:
float
- property max¶
The maximum value seen, or Double.NaN if no values seen.
- Returns:
The maximum value seen, or Double.NaN if no values seen
- Return type:
float
- property mean¶
The mean of values at the last calculateDerived() call.
- Returns:
The mean of values at the last calculateDerived() call
- Return type:
float
- property min¶
The minimum value seen, or Double.NaN if no values seen.
- Returns:
The minimum value seen, or Double.NaN if no values seen
- Return type:
float
- property stddev¶
The std deviation of values at the last calculateDerived() call.
- Returns:
The std deviation of values at the last calculateDerived() call
- Return type:
float
- property sum¶
The sum of values seen.
- Returns:
The sum of values seen
- Return type:
float
- property sumsq¶
The sum of values squared seen.
- Returns:
The sum of values squared seen
- Return type:
float
- weka.core.dataset.check_col_names_unique(cols_x, col_y=None)¶
Checks whether the column names are unique (a requirement for Instances objects).
- Parameters:
cols_x (list) – the column names for the input variables
col_y (str) – the optional name for the output variable
- Returns:
None if check passed, otherwise error message
- Return type:
str
- weka.core.dataset.create_instances_from_lists(x, y=None, name='data', cols_x=None, col_y=None, nominal_x=None, nominal_y=False)¶
Allows the generation of an Instances object from a list of lists for X and a list for Y (optional). Data can be numeric, string or bytes. Attributes can be converted to nominal with the weka.filters.unsupervised.attribute.NumericToNominal filter. None values are interpreted as missing values.
- Parameters:
x (list of list) – the input variables (row wise)
y (list) – the output variable (optional)
name (str) – the name of the dataset
cols_x (list) – the column names to use
col_y (str) – the column name to use for the output variable (y)
nominal_x (list) – the list of 0-based column indices to treat as nominal ones, ignored if None
nominal_y (bool) – whether the y column is to be treated as nominal
- Returns:
the generated dataset
- Return type:
- weka.core.dataset.create_instances_from_matrices(x, y=None, name='data', cols_x=None, col_y=None, nominal_x=None, nominal_y=False)¶
Allows the generation of an Instances object from a 2-dimensional matrix for X and a 1-dimensional matrix for Y (optional). Data can be numeric, string or bytes. Attributes can be converted to nominal with the weka.filters.unsupervised.attribute.NumericToNominal filter. nan values are interpreted as missing values.
- Parameters:
x (np.ndarray) – the input variables
y (np.ndarray) – the output variable (optional)
name (str) – the name of the dataset
cols_x (list) – the column names to use
col_y (str) – the column name to use for the output variable (y)
nominal_x (list) – the list of 0-based column indices to treat as nominal ones, ignored if None
nominal_y (bool) – whether the y column is to be treated as nominal
- Returns:
the generated dataset
- Return type:
- weka.core.dataset.missing_value()¶
Returns the value that represents missing values in Weka (NaN).
- Returns:
missing value
- Return type:
float
weka.core.distances module¶
- class weka.core.distances.DistanceFunction(classname='weka.core.EuclideanDistance', jobject=None, options=None)¶
Bases:
OptionHandler
Wrapper for Weka’s weka.core.DistanceFunction interface.
- property attribute_indices¶
Returns the attribute indices in use.
- Returns:
the attribute indices
- Return type:
str
- distance(first, second, cutoff=None)¶
Computes the distance between the two Instance objects.
weka.core.jvm module¶
- weka.core.jvm.add_bundled_jars(cp)¶
Adds the bundled jars to the JVM’s classpath.
- Parameters:
cp (list) – the list to append the classpath to
- weka.core.jvm.add_system_classpath(cp)¶
Adds the system’s classpath to the JVM’s classpath.
- Parameters:
cp (list) – the list to append the classpath to
- weka.core.jvm.automatically_install_packages = None¶
whether to automatically install missing packages
- weka.core.jvm.lib_dir()¶
Returns the “lib” directory path.
- Returns:
the path to the “lib” directory
- Return type:
str
- weka.core.jvm.start(class_path=None, bundled=True, packages=False, system_cp=False, max_heap_size=None, system_info=False, auto_install=False, logging_level=10)¶
Initializes the jpype connection (starts up the JVM).
- Parameters:
class_path (list) – the additional classpath elements to add
bundled (bool) – whether to add jars from the “lib” directory
packages (bool or str) – whether to add jars from Weka packages as well (bool) or an alternative Weka home directory (str)
system_cp (bool) – whether to add the system classpath as well
max_heap_size (str) – the maximum heap size (-Xmx parameter, eg 512m or 4g)
system_info (bool) – whether to print the system info (generated by weka.core.SystemInfo)
auto_install (bool) – whether to automatically install missing Weka packages (based on suggestions); in conjunction with package support
logging_level (int) – the logging level to use for this module, e.g., logging.DEBUG or logging.INFO
- weka.core.jvm.started = None¶
whether the JVM has been started
- weka.core.jvm.stop()¶
Kills the JVM.
- weka.core.jvm.with_package_support = None¶
whether JVM was started with package support
weka.core.packages module¶
- class weka.core.packages.Dependency(jobject)¶
Bases:
JavaObject
Wrapper for the weka.core.packageManagement.Dependency class.
- property target¶
Returns the target package constraint.
- Returns:
the package constraint
- Return type:
- weka.core.packages.LATEST = 'Latest'¶
Constant for the latest version of a package
- class weka.core.packages.Package(jobject)¶
Bases:
JavaObject
Wrapper for the weka.core.packageManagement.Package class.
- as_dict()¶
Turns the package information into a dictionary. Not to be confused with ‘to_dict’!
- Returns:
the package information as dictionary
- Return type:
dict
- property dependencies¶
Returns the dependencies of the package.
- Returns:
the list of Dependency objects
- Return type:
list of Dependency
- install()¶
Installs the package.
- property is_installed¶
Returns whether the package is installed.
- Returns:
whether installed
- Return type:
bool
- property metadata¶
Returns the meta-data.
- Returns:
the meta-data dictionary
- Return type:
dict
- property name¶
Returns the name of the package.
- Returns:
the name
- Return type:
str
- property url¶
Returns the URL of the package.
- Returns:
the url
- Return type:
str
- property version¶
Returns the version of the package.
- Returns:
the version
- Return type:
str
- class weka.core.packages.PackageConstraint(jobject)¶
Bases:
JavaObject
Wrapper for the weka.core.packageManagement.PackageConstraint class.
- check_constraint(pkge=None, constr=None)¶
Checks the constraints.
- Parameters:
pkge (Package) – the package to check
constr (PackageConstraint) – the package constraint to check
- weka.core.packages.all_package(name)¶
Returns Package object for the specified package (either installed or available). Returns None if not found.
- Parameters:
name (str) – the name of the package to retrieve
- Returns:
the package information, None if not available
- Return type:
- weka.core.packages.all_packages()¶
Returns a list of all packages.
- Returns:
the list of packages
- Return type:
list
- weka.core.packages.available_package(name)¶
Returns Package object for the specified, available package. Returns None if not installed.
- Parameters:
name (str) – the name of the available package to retrieve
- Returns:
the package information
- Return type:
- weka.core.packages.available_packages()¶
Returns a list of all packages that aren’t installed yet.
- Returns:
the list of packages
- Return type:
list
- weka.core.packages.establish_cache()¶
Establishes the package cache if necessary.
- weka.core.packages.install_missing_package(pkge, version='Latest', quiet=False, stop_jvm_and_exit=False)¶
Installs the package if not yet installed.
- Parameters:
pkge (str) – the name of the repository package, a URL (http/https) or a zip file
version (str) – in case of the repository packages, the version
quiet (bool) – whether to suppress console output and only print error messages
stop_jvm_and_exit (bool) – whether to stop the JVM and exit if anything was installed
- Returns:
tuple of (success, exit_required); “success” being True if either nothing to install or all successfully installed, False otherwise; “exit_required” being True if at least one package was installed and the JVM needs restarting
- Return type:
tuple
- weka.core.packages.install_missing_packages(pkges, quiet=False, stop_jvm_and_exit=False)¶
Installs the missing packages.
- Parameters:
pkges (the packages to install) – list of tuples (packagename, version) or strings (packagename, LATEST is assume for version), use “Latest” or LATEST constant to grab latest version
quiet (bool) – whether to suppress console output and only print error messages
stop_jvm_and_exit (bool) – whether to stop the JVM and exit if anything was installed
- Returns:
tuple of (success, exit_required); “success” being True if either nothing to install or all successfully installed, False otherwise; “exit_required” being True if at least one package was installed and the JVM needs restarting
- Return type:
tuple
- weka.core.packages.install_package(pkge, version='Latest', details=False)¶
Installs the specified package.
- Parameters:
pkge (str) – the name of the repository package, a URL (http/https) or a zip file
version (str) – in case of the repository packages, the version
details (bool) – whether to just return a success/failure flag (False) or a dict with detailed information (from_repo, version, error, install_message, success)
- Returns:
whether successfully installed or dict with detailed information
- Return type:
bool or dict
- weka.core.packages.install_packages(pkges, fail_fast=True, details=False)¶
Installs the specified packages. When running in fail_fast mode, then the first package that fails to install will stop the installation process. Otherwise, all packages are attempted to get installed.
The details dictionary uses the package name, url or file path as the key and stores the following information in a dict as value: - from_repo (bool): whether installed from repo or “unofficial” package (ie URL or local file) - version (str): the version that was attempted to be installed (if applicable) - error (str): any error message that was encountered - install_message (str): any installation message that got returned when installing from URL or zip file - success (bool): whether successfully installed or not
- Parameters:
pkges (list) – the list of packages to install (name of the repository package, a URL (http/https) or a zip file), if tuple must be name/version
fail_fast (bool) – whether to quit the installation of packages with the first package that fails (True) or whether to attempt to install all packages (False)
details (bool) – whether to just return a success/failure flag (False) or a dict with detailed information (per package: from_repo, version, error, install_message, success)
- Returns:
whether successfully installed or detailed information
- Return type:
bool or dict
- weka.core.packages.installed_package(name)¶
Returns Package object for the specified, installed package. Returns None if not installed.
- Parameters:
name (str) – the name of the installed package to retrieve
- Returns:
the package information
- Return type:
- weka.core.packages.installed_packages()¶
Returns a list of the installed packages.
- Returns:
the list of packages
- Return type:
list
- weka.core.packages.is_installed(name, version=None)¶
Checks whether a package with the name is already installed.
- Parameters:
name (str) – the name of the package
version (str) – the version to check as well, ignored if None
- Returns:
whether the package is installed
- Return type:
bool
- weka.core.packages.is_official_package(name, version=None)¶
Checks whether the package is an official one.
- Parameters:
name (str) – the name of the package to check
version (str) – the specific version to check
- Returns:
whether an official package or not
- Return type:
bool
- weka.core.packages.main(args=None)¶
Performs the specified package operation from the command-line. Calls JVM start/stop automatically. Use -h to see all options.
- Parameters:
args (list) – the command-line arguments to use, uses sys.argv if None
- weka.core.packages.refresh_cache()¶
Refreshes the cache.
- weka.core.packages.suggest_package(name, exact=False)¶
Suggests package(s) for the given name (classname, package name). Matching can be either exact or just a substring.
- Parameters:
name (str) – the name to look for
exact (bool) – whether to perform exact matching or substring matching
- Returns:
list of matching package names
- Return type:
list
- weka.core.packages.sys_main()¶
Runs the main function using the system cli arguments, and returns a system error code.
- Returns:
0 for success, 1 for failure.
- Return type:
int
- weka.core.packages.uninstall_package(name)¶
Uninstalls a package.
- Parameters:
name (str) – the name of the package
- weka.core.packages.uninstall_packages(names)¶
Uninstalls a package.
- Parameters:
names (list) – the names of the package
weka.core.serialization module¶
weka.core.stemmers module¶
- class weka.core.stemmers.Stemmer(classname='weka.core.stemmers.NullStemmer', jobject=None, options=None)¶
Bases:
OptionHandler
Wrapper class for stemmers.
- stem(s)¶
Performs stemming on the string.
- Parameters:
s (str) – the string to stem
- Returns:
the stemmed string
- Return type:
str
weka.core.stopwords module¶
- class weka.core.stopwords.Stopwords(classname='weka.core.stopwords.Null', jobject=None, options=None)¶
Bases:
OptionHandler
Wrapper class for stopwords handlers.
- is_stopword(s)¶
Checks a string whether it is a stopword.
- Parameters:
s (str) – the string to check
- Returns:
True if a stopword
- Return type:
bool
weka.core.tokenizers module¶
- class weka.core.tokenizers.TokenIterator(tokenizer)¶
Bases:
object
Iterator for string tokens.
- class weka.core.tokenizers.Tokenizer(classname='weka.core.tokenizers.AlphabeticTokenizer', jobject=None, options=None)¶
Bases:
OptionHandler
Wrapper class for tokenizers.
- tokenize(s)¶
Tokenizes the string.
- Parameters:
s (str) – the string to tokenize
- Returns:
the iterator
- Return type:
weka.core.typeconv module¶
- weka.core.typeconv.float_to_jfloat(d)¶
Turns the Python float into a Java java.lang.Float object.
- Parameters:
d (float) – the Python float
- Returns:
the Float object
- Return type:
JPype object
- weka.core.typeconv.from_jobject_array(a)¶
Converts the java object array into a list.
- Parameters:
a – the java array to convert
- Returns:
the generated list
- weka.core.typeconv.jdouble_array_to_ndarray(a)¶
Turns the Java array of doubles into a numpy 2-dim array.
- Parameters:
a – the double array
- Type:
JPype object
- Returns:
Numpy array
- Return type:
numpy.darray
- weka.core.typeconv.jdouble_matrix_to_ndarray(m)¶
Turns the Java matrix (2-dim array) of doubles into a numpy 2-dim array.
- Parameters:
m – the double matrix
- Type:
JPype object
- Returns:
Numpy array
- Return type:
numpy.darray
- weka.core.typeconv.jdouble_to_float(d)¶
Turns the Java java.lang.Double object into Python float object.
- Parameters:
d (JPype object) – the java.lang.Double
- Returns:
the Float object
- Return type:
float
- weka.core.typeconv.jenumeration_to_list(enm)¶
Turns the java.util.Enumeration into a list.
- Parameters:
enm (JPype object) – the enumeration to convert
- Returns:
the list
- Return type:
list
- weka.core.typeconv.jint_array_to_ndarray(a)¶
Turns the Java array of ints into a numpy 2-dim array.
- Parameters:
a – the double array
- Type:
JPype object
- Returns:
Numpy array
- Return type:
numpy.darray
- weka.core.typeconv.jstring_array_to_list(a)¶
Turns the Java string array into Python unicode string list.
- Parameters:
a (JPype object) – the string array to convert
- Returns:
the string list
- Return type:
list
- weka.core.typeconv.jstring_list_to_string_list(l, return_empty_if_none=True)¶
Converts a Java java.util.List containing strings into a Python list.
- Parameters:
l (JPype object) – the list to convert
return_empty_if_none (bool) – whether to return an empty list or None when list object is None
- Returns:
the list with UTF strings
- Return type:
list
- weka.core.typeconv.string_list_to_jarray(l)¶
Turns a Python unicode string list into a Java String array.
- Parameters:
l – the string list
- Type:
list
- Return type:
java string array
- Returns:
JPype object
- weka.core.typeconv.string_list_to_jlist(l)¶
Turns a Python unicode string list into a Java List.
- Parameters:
l – the string list
- Type:
list
- Return type:
java list
- weka.core.typeconv.to_jdouble_array(values, none_as_nan: bool = False)¶
Converts the list of floats or the numpy array into a Java array.
- Parameters:
values – the values to convert
none_as_nan (bool) – whether to convert None values to NaN
- Returns:
the java array
- weka.core.typeconv.to_jint_array(values)¶
Converts the list of ints into a Java array.
- Parameters:
values – the values to convert
- Returns:
the java array
- weka.core.typeconv.to_jobject_array(values)¶
Converts the list of objects into a Java object array.
- Parameters:
values – the list of objects to convert
- Returns:
the java array
- weka.core.typeconv.to_string(o)¶
Turns the object into a string.
- Parameters:
o – the object to convert
- Returns:
the generated string
- Return type:
str
weka.core.utils module¶
- weka.core.utils.correlation(values1, values2)¶
Computes the correlation between the two lists of floats.
- Parameters:
values1 (list) – the first list of floats
values2 (list) – the second list of floats
- Returns:
the correlation coefficient
- Return type:
float
- weka.core.utils.normalize(values, sum_=None)¶
Normalizes the doubles in the array using the given value.
- Parameters:
values (list) – the list of floats to normalize
sum (float) – the value by which the floats are to be normalized
- Returns:
the normalized float values
- Return type:
list
- weka.core.utils.variance(values)¶
Computes the variance for a list of floats.
- Parameters:
values (list) – the list of floats to compute the variance for
- Returns:
the variance
- Return type:
float
weka.core.version module¶
- weka.core.version.pww_version()¶
Returns the installed version of python-weka-wrapper3.
- Returns:
the version, None if failed to obtain
- Return type:
str
- weka.core.version.weka_version()¶
Determines the version of Weka in use.
- Returns:
the version
- Return type:
str
- weka.core.version.with_graph_support()¶
Checks whether pygraphviz is installed for graph support.
- Returns:
True if with pygraphviz support
- Return type:
bool
- weka.core.version.with_plot_support()¶
Checks whether matplotlib is installed for plot support.
- Returns:
True if with matplotlib support
- Return type:
bool