weka.core package¶
Submodules¶
weka.core.capabilities module¶
-
class
weka.core.capabilities.Capabilities(jobject=None, owner=None)¶ Bases:
weka.core.classes.JavaObjectWrapper for Capabilities.
-
attribute_capabilities()¶ Returns all the attribute capabilities.
Returns: attribute capabilities Return type: Capabilities
-
capabilities()¶ Returns all the capabilities.
Returns: all capabilities Return type: list
-
class_capabilities()¶ Returns all the class capabilities.
Returns: class capabilities Return type: Capabilities
-
dependencies()¶ Returns all the dependencies.
Returns: the dependency list Return type: list
-
disable(capability)¶ Disables the specified capability.
Parameters: capability (Capability) – the capability to disable
-
disable_all()¶ Disables all capabilities.
-
disable_all_attribute_dependencies()¶ Disables all attribute dependencies.
-
disable_all_attributes()¶ Disables all attributes.
-
disable_all_class_dependencies()¶ Disables all class dependencies.
-
disable_all_classes()¶ Disables all classes.
-
disable_dependency(capability)¶ Disables the dependency of the given capability Disabling NOMINAL_ATTRIBUTES also disables BINARY_ATTRIBUTES, UNARY_ATTRIBUTES and EMPTY_NOMINAL_ATTRIBUTES.
Parameters: capability (Capability) – the dependency to disable
-
enable(capability)¶ enables the specified capability.
Parameters: capability (Capability) – the capability to enable
-
enable_all()¶ enables all capabilities.
-
enable_all_attribute_dependencies()¶ enables all attribute dependencies.
-
enable_all_attributes()¶ enables all attributes.
-
enable_all_class_dependencies()¶ enables all class dependencies.
-
enable_all_classes()¶ enables all classes.
-
enable_dependency(capability)¶ enables the dependency of the given capability enabling NOMINAL_ATTRIBUTES also enables BINARY_ATTRIBUTES, UNARY_ATTRIBUTES and EMPTY_NOMINAL_ATTRIBUTES.
Parameters: capability (Capability) – the dependency to enable
-
classmethod
for_instances(data, multi=None)¶ returns a Capabilities object specific for this data. The minimum number of instances is not set, the check for multi-instance data is optional.
Parameters: - data (Instances) – the data to generate the capabilities for
- multi (bool) – whether to check the structure, too
Returns: the generated capabilities
Return type:
-
handles(capability)¶ Returns whether the specified capability is set.
Parameters: capability (Capability) – the capability to check Returns: whether the capability is set Return type: bool
-
has_dependencies()¶ Returns whether any dependencies are set.
Returns: whether any dependecies are set Return type: bool
-
has_dependency(capability)¶ Returns whether the specified dependency is set.
Parameters: capability (Capability) – the capability to check Returns: whether the dependency is set Return type: bool
-
min_instances¶ Returns the minimum number of instances that must be supported.
Returns: the minimum number Return type: int
-
other_capabilities()¶ Returns all other capabilities.
Returns: all other capabilities Return type: Capabilities
-
owner¶ Returns the owner of these capabilities, if any.
Returns: the owner, can be None Return type: JavaObject
-
supports(capabilities)¶ Returns true if the currently set capabilities support at least all of the capabiliites of the given Capabilities object (checks only the enum!)
Parameters: capabilities (Capabilities) – the capabilities to check Returns: whether the current capabilities support at least the specified ones Return type: bool
-
supports_maybe(capabilities)¶ Returns true if the currently set capabilities support (or have a dependency) at least all of the capabilities of the given Capabilities object (checks only the enum!)
Parameters: capabilities (Capabilities) – the capabilities to check Returns: whether the current capabilities (potentially) support the specified ones Return type: bool
-
test_attribute(att, is_class=None, fail=False)¶ Tests whether the attribute meets the conditions.
Parameters: - att (Attribute) – the Attribute to test
- is_class (bool) – whether this attribute is the class attribute
- fail (bool) – whether to fail with an exception in case the test fails
Returns: whether the attribute meets the conditions
Return type: bool
-
test_instances(data, from_index=None, to_index=None, fail=False)¶ Tests whether the dataset meets the conditions.
Parameters: - data (Instances) – the Instances to test
- from_index (int) – the first attribute to include
- to_index (int) – the last attribute to include
Returns: wether the dataset meets the requirements
Return type: bool
-
-
class
weka.core.capabilities.Capability(jobject=None, member=None)¶ Bases:
weka.core.classes.EnumWrapper for a Capability.
-
is_attribute¶ Returns whether this capability is an attribute.
Returns: whether it is an attribute Return type: bool
-
is_attribute_capability¶ Returns whether this capability is an attribute capability.
Returns: whether it is an attribute capability Return type: bool
-
is_class¶ Returns whether this capability is a class.
Returns: whether it is a class Return type: bool
-
is_class_capability¶ Returns whether this capability is a class capability.
Returns: whether it is a class capability Return type: bool
-
is_other_capability¶ Returns whether this capability is an other capability.
Returns: whether it is an other capability Return type: bool
-
weka.core.classes module¶
-
class
weka.core.classes.AbstractParameter(classname=None, jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerAncestor for all parameter classes used by SetupGenerator and MultiSearch.
-
prop¶ Returns the currently set property to apply the parameter to.
Returns: the property Return type: str
-
-
class
weka.core.classes.Configurable(config=None)¶ Bases:
weka.core.classes.JSONObjectThe ancestor for all actors.
-
config¶ Obtains the currently set options of the actor.
Returns: the options Return type: dict
-
description()¶ Returns a description of the object.
Returns: the description Return type: str
-
fix_config(options)¶ Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
Parameters: options (dict) – the options to fix Returns: the (potentially) fixed options Return type: dict
-
classmethod
from_dict(d)¶ Restores its state from a dictionary, used in de-JSONification.
Parameters: d (dict) – the object dictionary
-
generate_help()¶ Generates a help string for this actor.
Returns: the help string Return type: str
-
help¶ Obtains the help information per option for this actor.
Returns: the help Return type: dict
-
print_help()¶ Prints a help string for this actor to stdout.
-
to_dict()¶ Returns a dictionary that represents this object, to be used for JSONification.
Returns: the object dictionary Return type: dict
-
-
class
weka.core.classes.Enum(jobject=None, enum=None, member=None)¶ Bases:
weka.core.classes.JavaObjectWrapper for Java enums.
-
name¶ Returns the name of the enum member.
Returns: the name Return type: str
-
ordinal¶ Returns the ordinal of the enum member.
Returns: the ordinal Return type: int
-
values¶ Returns list of all enum members.
Returns: all enum members Return type: list
-
-
class
weka.core.classes.Environment(jobject=None)¶ Bases:
weka.core.classes.JavaObjectWraps around weka.core.Environment
-
add_variable(key, value, system_wide=False)¶ Adds the environment variable.
Parameters: - key (str) – the name of the variable
- value (str) – the value
- system_wide (bool) – whether to add the variable system wide
-
remove_variable(key)¶ Adds the environment variable.
Parameters: key (str) – the name of the variable
-
classmethod
system_wide()¶ Returns the system-wide environment.
;return: the environment :rtype: Environment
-
variable_names()¶ Returns the names of all environment variables.
Returns: the names of the variables Return type: list
-
variable_value(key)¶ Returns the value of the environment variable.
Parameters: key (str) – the name of the variable Returns: the variable value Return type: str
-
-
class
weka.core.classes.JSONObject¶ Bases:
objectAncestor for classes that can be represented as JSON and restored from JSON.
-
classmethod
from_dict(d)¶ Restores an object state from a dictionary, used in de-JSONification.
Parameters: d (dict) – the object dictionary Returns: the object Return type: object
-
classmethod
from_json(s)¶ Restores the object from the given JSON.
Parameters: s (str) – the JSON string to parse Returns: the
-
shallow_copy()¶ Returns a shallow copy of itself.
Returns: the copy Return type: object
-
to_dict()¶ Returns a dictionary that represents this object, to be used for JSONification.
Returns: the object dictionary Return type: dict
-
to_json()¶ Returns the options as JSON.
Returns: the object as string Return type: str
-
classmethod
-
class
weka.core.classes.JavaArray(jobject)¶ Bases:
weka.core.classes.JavaObjectConvenience wrapper around Java arrays.
-
component_type()¶ Returns the classname of the elements.
Returns: the class of the elements Return type: str
-
classmethod
new_instance(classname, length)¶ Creates a new array with the given classname and length; initial values are null.
Parameters: - classname (str) – the classname in Java notation (eg “weka.core.DenseInstance”)
- length (int) – the length of the array
Returns: the Java array
Return type: JB_Object
-
-
class
weka.core.classes.JavaArrayIterator(data)¶ Bases:
objectIterator for elements in a Java array.
-
next()¶ Returns the next element from the array.
Returns: the next array element object, wrapped as JavaObject if not null Return type: JavaObject or None
-
-
class
weka.core.classes.JavaObject(jobject)¶ Bases:
weka.core.classes.JSONObjectBasic Java object.
-
classmethod
check_type(jobject, intf_or_class)¶ Returns whether the object implements the specified interface or is a subclass.
Parameters: - jobject (JB_Object) – the Java object to check
- intf_or_class (str) – the classname in Java notation (eg “weka.core.DenseInstance;”)
Returns: whether object implements interface or is subclass
Return type: bool
-
classname¶ Returns the Java classname in dot-notation.
Returns: the Java classname Return type: str
-
classmethod
enforce_type(jobject, intf_or_class)¶ Raises an exception if the object does not implement the specified interface or is not a subclass. E.g.: self._enforce_type(‘weka.core.OptionHandler’, ‘Lweka/core/OptionHandler;’) or self._enforce_type(‘weka.core.converters.AbstractFileLoader’)
Parameters: - jobject (JB_Object) – the Java object to check
- intf_or_class (str) – the classname in Java notation (eg “weka.core.DenseInstance”)
-
classmethod
from_dict(d)¶ Restores an object state from a dictionary, used in de-JSONification.
Parameters: d (dict) – the object dictionary Returns: the object Return type: object
-
get_property(path)¶ Attempts to get the value (jobject, a Java object) of the provided (bean) property path.
Parameters: path (str) – the property path, e.g., “filter” for a setFilter(…)/getFilter() method pair Returns: the wrapped Java object Return type: JavaObject
-
is_serializable¶ Returns true if the object is serialiable.
Returns: true if serializable Return type: bool
-
jclass¶ Returns the Java class object of the underlying Java object.
Returns: the Java class Return type: JB_Object
-
jclasswrapper¶ Returns a JClassWrapper instance of the class for the encapsulated Java object, giving access to the class methods using dot notation.
http://pythonhosted.org//javabridge/highlevel.html#wrapping-java-objects-using-reflection
Returns: the wrapper Return type: JClassWrapper
-
jwrapper¶ Returns a JWrapper instance of the encapsulated Java object, giving access to methods using dot notation.
http://pythonhosted.org//javabridge/highlevel.html#wrapping-java-objects-using-reflection
Returns: the wrapper Return type: JWrapper
-
classmethod
new_instance(classname)¶ Creates a new object from the given classname using the default constructor, None in case of error.
Parameters: classname (str) – the classname in Java notation (eg “weka.core.DenseInstance”) Returns: the Java object Return type: JB_Object
-
set_property(path, jobject)¶ Attempts to set the value (jobject, a Java object) of the provided (bean) property path.
Parameters: - path (str) – the property path, e.g., “filter” for a setFilter(…)/getFilter() method pair
- jobject (JB_Object) – the Java object to set; if instance of JavaObject class, the jobject member is automatically used
-
to_dict()¶ Returns a dictionary that represents this object, to be used for JSONification.
Returns: the object dictionary Return type: dict
-
classmethod
-
class
weka.core.classes.ListParameter(jobject=None, options=None)¶ Bases:
weka.core.classes.AbstractParameterParameter using a predefined list of values, used by SetupGenerator and MultiSearch.
-
values¶ Returns the currently set values.
Returns: the list of values (strings) Return type: list
-
-
class
weka.core.classes.MathParameter(jobject=None, options=None)¶ Bases:
weka.core.classes.AbstractParameterParameter using a math expression for generating values, used by SetupGenerator and MultiSearch.
-
base¶ Returns the currently set base value.
Returns: the base Return type: float
-
expression¶ Returns the currently set expression.
Returns: the expression Return type: str
-
maximum¶ Returns the currently set maximum value.
Returns: the maximum Return type: float
-
minimum¶ Returns the currently set minimum value.
Returns: the minimum Return type: float
-
step¶ Returns the currently set step value.
Returns: the step Return type: float
-
-
class
weka.core.classes.Option(jobject)¶ Bases:
weka.core.classes.JavaObjectWrapper for the weka.core.Option class.
-
description¶ Returns the description of the option.
Returns: the description Return type: str
-
name¶ Returns the name of the option.
Returns: the name Return type: str
-
num_arguments¶ Returns the synopsis of the option.
Returns: the synopsis Return type: str
-
synopsis¶ Returns the synopsis of the option.
Returns: the synopsis Return type: str
-
-
class
weka.core.classes.OptionHandler(jobject, options=None)¶ Bases:
weka.core.classes.JavaObject,weka.core.classes.ConfigurableAncestor for option-handling classes. Classes should implement the weka.core.OptionHandler interface to have any effect.
-
description()¶ Returns a description of the object.
Returns: the description Return type: str
-
classmethod
from_dict(d)¶ Restores an object state from a dictionary, used in de-JSONification.
Parameters: d (dict) – the object dictionary Returns: the object Return type: object
-
global_info()¶ Returns the globalInfo() result, None if not available.
Rtypes: str
-
options¶ Obtains the currently set options as list.
Returns: the list of options Return type: list
-
to_commandline()¶ Generates a commandline string from the JavaObject instance.
Returns: the commandline string Return type: str
-
to_dict()¶ Returns a dictionary that represents this object, to be used for JSONification.
Returns: the object dictionary Return type: dict
-
to_help()¶ Returns a string that contains the ‘global_info’ text and the options.
Returns: the generated help string Return type: str
-
-
class
weka.core.classes.Random(seed)¶ Bases:
weka.core.classes.JavaObjectWrapper for the java.util.Random class.
-
next_double()¶ Next random double.
Returns: the next random double Return type: double
-
next_int(n=None)¶ Next random integer. if n is provided, then between 0 and n-1.
Parameters: n (int) – the upper limit (minus 1) for the random integer Returns: the next random integer Return type: int
-
-
class
weka.core.classes.Range(jobject=None, ranges=None)¶ Bases:
weka.core.classes.JavaObjectWrapper for a Weka Range object.
-
invert¶ Returns whether the range is inverted.
Returns: true if inverted Return type: bool
-
ranges¶ Returns the string range.
Returns: the string range of 1-based indices Return type: str
-
selection()¶ Returns the selection list.
Returns: the list of 0-based integer indices Return type: list
-
upper(upper)¶ Sets the upper limit.
Parameters: upper (int) – the upper limit
-
-
class
weka.core.classes.SelectedTag(jobject=None, tag_id=None, tag_text=None, tags=None)¶ Bases:
weka.core.classes.JavaObjectWrapper for the weka.core.SelectedTag class.
Returns the associated tags.
Returns: the list of Tag objects Return type: list
-
class
weka.core.classes.SetupGenerator(jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerAllows generation of large number of setups using parameter setups.
-
base_object¶ Returns the base object to apply the setups to.
Returns: the base object Return type: JavaObject or OptionHandler
-
parameters¶ Returns the list of currently set search parameters.
Returns: the list of AbstractSearchParameter objects Return type: list
-
setups()¶ Generates and returns all the setups according to the parameter search space.
Returns: the list of configured objects (of type JavaObject) Return type: list
-
-
class
weka.core.classes.SingleIndex(jobject=None, index=None)¶ Bases:
weka.core.classes.JavaObjectWrapper for a Weka SingleIndex object.
-
index()¶ Returns the integer index.
Returns: the 0-based integer index Return type: int
-
single_index¶ Returns the string index.
Returns: the 1-based string index Return type: str
-
upper(upper)¶ Sets the upper limit.
Parameters: upper (int) – the upper limit
-
-
class
weka.core.classes.Stoppable¶ Bases:
objectClasses that can be stopped.
-
is_stopped()¶ Returns whether the object has been stopped.
Returns: whether stopped Return type: bool
-
stop_execution()¶ Triggers the stopping of the object.
-
-
class
weka.core.classes.Tag(jobject=None, ident=None, ident_str='', readable='', uppercase=True)¶ Bases:
weka.core.classes.JavaObjectWrapper for the weka.core.Tag class.
-
ident¶ Returns the current integer ID of the tag.
Returns: the integer ID Return type: int
-
identstr¶ Returns the current ID string.
Returns: the ID string Return type: str
-
readable¶ Returns the ‘human readable’ string.
Returns: the readable string Return type: str
-
-
class
weka.core.classes.Tags(jobject=None, tags=None)¶ Bases:
weka.core.classes.JavaObjectWrapper for an array of weka.core.Tag objects.
-
find(name)¶ Returns the Tag that matches the name.
Parameters: name (str) – the string representation of the tag Returns: the tag, None if not found Return type: Tag
Instantiates the Tag array obtained from the object using the specified method name.
Example: cls = Classifier(classname=”weka.classifiers.meta.MultiSearch”) tags = Tags.get_object_tags(cls, “getMetricsTags”)
Parameters: - javaobject (JavaObject) – the javaobject to obtain the tags from
- methodname (str) – the method name returning the Tag array
Returns: the Tags objects
Return type:
Instantiates the Tag array located in the specified class with the given field name.
Example: tags = Tags.get_tags(“weka.classifiers.functions.SMO”, “TAGS_FILTER”)
Parameters: - classname (str) – the classname in which the tags reside
- field (str) – the field name of the Tag array
Returns: the Tags objects
Return type:
-
-
weka.core.classes.backquote(s)¶ Backquotes the string.
Parameters: s (str) – the string to process Returns: the backquoted string Return type: str
-
weka.core.classes.complete_classname(classname)¶ Attempts to complete a partial classname like ‘.J48’ and returns the full classname if a single match was found, otherwise an exception is raised.
Parameters: classname (str) – the partial classname to expand Returns: the full classname Return type: str
-
weka.core.classes.deregister_dict_handler(typestr)¶ Deregisters a handler for restoring an object from a JSON dictionary.
Parameters: typestr (str) – the type of the object
-
weka.core.classes.from_commandline(cmdline, classname=None)¶ Creates an OptionHandler based on the provided commandline string.
Parameters: - cmdline (str) – the commandline string to use
- classname (str) – the classname of the wrapper to return other than OptionHandler (in dot-notation)
Returns: the generated option handler instance
Return type: object
-
weka.core.classes.from_dict_handlers= {}¶ The methods that handle the restoration from a JSON dictionary, stored under their ‘type’.
-
weka.core.classes.get_class(classname)¶ Returns the class object associated with the dot-notation classname.
Taken from here: http://stackoverflow.com/a/452981
Parameters: classname (str) – the classname Returns: the class object Return type: object
-
weka.core.classes.get_classname(obj)¶ Returns the classname of the JB_Object, Python class or object.
Parameters: obj (object) – the java object or Python class/object to get the classname for Returns: the classname Return type: str
-
weka.core.classes.get_dict_handler(typestr)¶ Returns the handler for restoring an object from a JSON dictionary.
Parameters: typestr (str) – the type of the object Returns: the handler, None if not available
-
weka.core.classes.get_jclass(classname)¶ Returns the Java class object associated with the dot-notation classname.
Parameters: classname (str) – the classname Returns: the class object Return type: JB_Object
-
weka.core.classes.get_static_field(classname, fieldname, signature)¶ Returns the Java object associated with the static field of the specified class.
Parameters: - classname (str) – the classname of the class to get the field from
- fieldname (str) – the name of the field to retriev
Returns: the object
Return type: JB_Object
-
weka.core.classes.has_dict_handler(typestr)¶ Returns the handler for restoring an object from a JSON dictionary.
Parameters: typestr (str) – the type of the object Returns: the handler, None if not available
-
weka.core.classes.is_array(obj)¶ Checks whether the Java object is an array.
Parameters: obj (JB_Object) – the Java object to check Returns: whether the object is an array Return type: bool
-
weka.core.classes.is_instance_of(obj, class_or_intf_name)¶ Checks whether the Java object implements the specified interface or is a subclass of the superclass.
Parameters: - obj (JB_Object) – the Java object to check
- class_or_intf_name (str) – the superclass or interface to check, dot notation or with forward slashes
Returns: true if either implements interface or subclass of superclass
Return type: bool
-
weka.core.classes.join_options(options)¶ Turns the list of options back into a single commandline string.
Parameters: options (list) – the list of options to process Returns: the combined options Return type: str
-
weka.core.classes.main()¶ Runs a classifier from the command-line. Calls JVM start/stop automatically. Use -h to see all options.
-
weka.core.classes.quote(s)¶ Quotes the string if necessary.
Parameters: s (str) – the string to process Returns: the quoted string Return type: str
-
weka.core.classes.register_dict_handler(typestr, handler)¶ Registers a handler for restoring an object from a JSON dictionary.
Parameters: - typestr (str) – the type of the object
- handler – the method
-
weka.core.classes.split_options(cmdline)¶ Splits the commandline into a list of options.
Parameters: cmdline (str) – the commandline string to split into individual options Returns: the split list of commandline options Return type: list
-
weka.core.classes.to_commandline(optionhandler)¶ Generates a commandline string from the OptionHandler instance.
Parameters: optionhandler (OptionHandler) – the OptionHandler instance to turn into a commandline Returns: the commandline string Return type: str
-
weka.core.classes.unbackquote(s)¶ Un-backquotes the string.
Parameters: s (str) – the string to process Returns: the un-backquoted string Return type: str
-
weka.core.classes.unquote(s)¶ Un-quotes the string.
Parameters: s (str) – the string to process Returns: the un-quoted string Return type: str
weka.core.converters module¶
-
class
weka.core.converters.IncrementalLoaderIterator(loader, structure)¶ Bases:
objectIterator for dataset rows when loarding incrementally.
-
class
weka.core.converters.Loader(classname='weka.core.converters.ArffLoader', jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerWrapper class for Loaders.
-
load_file(dfile, incremental=False)¶ Loads the specified file and returns the Instances object. In case of incremental loading, only the structure.
Parameters: - dfile (str) – the file to load
- incremental (bool) – whether to load the dataset incrementally
Returns: the full dataset or the header (if incremental)
Return type: Raises: Exception – if the file does not exist
-
load_url(url, incremental=False)¶ Loads the specified URL and returns the Instances object. In case of incremental loading, only the structure.
Parameters: - url (str) – the URL to load the data from
- incremental (bool) – whether to load the dataset incrementally
Returns: the full dataset or the header (if incremental)
Return type:
-
-
class
weka.core.converters.Saver(classname='weka.core.converters.ArffSaver', jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerWrapper class for Savers.
-
capabilities()¶ Returns the capabilities of the saver.
Returns: the capabilities Return type: Capabilities
-
-
class
weka.core.converters.TextDirectoryLoader(jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerWrapper class for TextDirectoryLoader.
-
weka.core.converters.load_any_file(filename)¶ Determines a Loader based on the the file extension. If successful, loads the full dataset and returns it.
Parameters: filename (str) – the name of the file to load Returns: the Return type: Instances
-
weka.core.converters.loader_for_file(filename)¶ Returns a Loader that can load the specified file, based on the file extension. None if failed to determine.
Parameters: filename (str) – the filename to get the loader for Returns: the assoicated loader instance or None if none found Return type: Loader
-
weka.core.converters.ndarray_to_instances(array, relation, att_template='Att-#', att_list=None)¶ Converts the numpy matrix into an Instances object and returns it.
Parameters: - array (numpy.darray) – the numpy ndarray to convert
- relation (str) – the name of the dataset
- att_template (str) – the prefix to use for the attribute names, “#” is the 1-based index, “!” is the 0-based index, “@” the relation name
- att_list (list) – the list of attribute names to use
Returns: the generated instances object
Return type:
weka.core.database module¶
-
class
weka.core.database.DatabaseUtils(jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerWrapper class for weka.experiment.DatabaseUtils.
-
db_url¶ Obtains the currently set database URL.
Returns: the database URL Return type: str
-
password¶ Obtains the currently set database password.
Returns: the database password Return type: str
-
user¶ Obtains the currently set database user.
Returns: the database user Return type: str
-
-
class
weka.core.database.InstanceQuery(jobject=None, options=None)¶ Bases:
weka.core.database.DatabaseUtilsWrapper class for weka.experiment.InstanceQuery.
-
custom_properties¶ Obtains the currently set custom properties file.
Returns: the custom properties file Return type: str
-
query¶ Obtains the current SQL query to execute.
Returns: the SQL query Return type: str
-
retrieve_instances(query=None)¶ Executes either the supplied query or the one set via options (or the ‘query’ property).
Parameters: query (str) – query to execute if not the currently set one Returns: the generated dataq Return type: Instances
-
sparse_data¶ Obtains the whether sparse data is returned or not.
Returns: whether sparse data is generated Return type: bool
-
weka.core.dataset module¶
-
class
weka.core.dataset.Attribute(jobject)¶ Bases:
weka.core.classes.JavaObjectWrapper class for weka.core.Attribute.
-
add_relation(instances)¶ Adds the relation value, returns the index.
Parameters: instances (Instances) – the Instances object to add Returns: the index Return type: int
-
add_string_value(s)¶ Adds the string value, returns the index.
Parameters: s (str) – the string to add Returns: the index Return type: int
-
copy(name=None)¶ Creates a copy of this attribute.
Parameters: name (str) – the new name, uses the old one if None Returns: the copy of the attribute Return type: Attribute
-
classmethod
create_date(name, formt="yyyy-MM-dd'T'HH:mm:ss")¶ Creates a date attribute.
Parameters: - name (str) – the name of the attribute
- formt (str) – the date format, see Javadoc for java.text.SimpleDateFormat
-
classmethod
create_nominal(name, labels)¶ Creates a nominal attribute.
Parameters: - name (str) – the name of the attribute
- labels (list) – the list of string labels to use
-
classmethod
create_numeric(name)¶ Creates a numeric attribute.
Parameters: name (str) – the name of the attribute
-
classmethod
create_relational(name, inst)¶ Creates a relational attribute.
Parameters: - name (str) – the name of the attribute
- inst (Instances) – the structure of the relational attribute
-
classmethod
create_string(name)¶ Creates a string attribute.
Parameters: name (str) – the name of the attribute
-
date_format¶ Returns the format of this data attribute. See java.text.SimpleDateFormat Javadoc.
Returns: the format string Return type: str
-
equals(att)¶ Checks whether this attributes is the same as the provided one.
Parameters: att (Attribute) – the Attribute to check against Returns: whether the same Return type: bool
-
equals_msg(att)¶ Checks whether this attributes is the same as the provided one. Returns None if the same, otherwise error message.
Parameters: att (Attribute) – the Attribute to check against Returns: None if the same, otherwise error message Return type: str
-
index¶ Returns the index of this attribute.
Returns: the index Return type: int
-
index_of(label)¶ Returns the index of the label in this attribute.
Parameters: label (str) – the string label to get the index for Returns: the 0-based index Return type: int
-
is_averagable¶ Returns whether the attribute is averagable.
Returns: whether averagable Return type: bool
-
is_date¶ Returns whether the attribute is a date one.
Returns: whether date attribute Return type: bool
-
is_in_range(value)¶ Checks whether the value is within the bounds of the numeric attribute.
Parameters: value (float) – the numeric value to check Returns: whether between lower and upper bound Return type: bool
-
is_nominal¶ Returns whether the attribute is a nominal one.
Returns: whether nominal attribute Return type: bool
-
is_numeric¶ Returns whether the attribute is a numeric one (date or numeric).
Returns: whether numeric attribute Return type: bool
-
is_relation_valued¶ Returns whether the attribute is a relation valued one.
Returns: whether relation valued attribute Return type: bool
-
is_string¶ Returns whether the attribute is a string attribute.
Returns: whether string attribute Return type: bool
-
lower_numeric_bound¶ Returns the lower numeric bound of the numeric attribute.
Returns: the lower bound Return type: float
-
name¶ Returns the name of the attribute.
Returns: the name Return type: str
-
num_values¶ Returns the number of labels.
Returns: the number of labels Return type: int
-
ordering¶ Returns the ordering of the attribute.
Returns: the ordering (ORDERING_SYMBOLIC, ORDERING_ORDERED, ORDERING_MODULO) Return type: int
-
parse_date(s)¶ Parses the date string and returns the internal format value.
Parameters: s (str) – the date string Returns: the internal format Return type: float
-
type¶ Returns the type of the attribute. See weka.core.Attribute Javadoc.
Returns: the type Return type: int
-
type_str(short=False)¶ Returns the type of the attribute as string.
Returns: the type Return type: str
-
upper_numeric_bound¶ Returns the upper numeric bound of the numeric attribute.
Returns: the upper bound Return type: float
-
value(index)¶ Returns the label for the index.
Parameters: index (int) – the 0-based index of the label to return Returns: the label Return type: str
-
values¶ Returns the labels, strings or relation-values.
Returns: all the values, None if not NOMINAL, STRING, or RELATION Return type: list
-
weight¶ Returns the weight of the attribute.
Returns: the weight Return type: float
-
-
class
weka.core.dataset.AttributeIterator(data)¶ Bases:
objectIterator for attributes in an Instances object.
-
class
weka.core.dataset.AttributeStats(jobject)¶ Bases:
weka.core.classes.JavaObjectContainer for attribute statistics.
-
distinct_count¶ The number of distinct values.
Returns: The number of distinct values Return type: int
-
int_count¶ The number of int-like values.
Returns: The number of int-like values Return type: int
-
missing_count¶ The number of missing values.
Returns: The number of missing values Return type: int
-
nominal_counts¶ Counts of each nominal value.
Returns: Counts of each nominal value Return type: ndarray
-
nominal_weights¶ Weight mass for each nominal value.
Returns: Weight mass for each nominal value Return type: ndarray
-
numeric_stats¶ Stats on numeric value distributions.
Returns: Stats on numeric value distributions Return type: NumericStats
-
total_count¶ The total number of values.
Returns: The total number of values Return type: int
-
unique_count¶ The number of values that only appear once.
Returns: The number of values that only appear once Return type: int
-
-
class
weka.core.dataset.Instance(jobject)¶ Bases:
weka.core.classes.JavaObjectWrapper class for weka.core.Instance.
-
class_attribute¶ Returns the currently set class attribute.
Returns: the class attribute Return type: Attribute
-
class_index¶ Returns the currently set class index.
Returns: the class index, -1 if not set Return type: int
-
classmethod
create_instance(values, classname='weka.core.DenseInstance', weight=1.0)¶ Creates a new instance.
Parameters: - values (ndarray or list) – the float values (internal format) to use, numpy array or list.
- classname (str) – the classname of the instance (eg weka.core.DenseInstance).
- weight (float) – the weight of the instance
-
classmethod
create_sparse_instance(values, max_values, classname='weka.core.SparseInstance', weight=1.0)¶ Creates a new sparse instance.
Parameters: - values (list) – the list of tuples (0-based index and internal format float). The indices of the tuples must be in ascending order and “max_values” must be set to the maximum number of attributes in the dataset.
- max_values (int) – the maximum number of attributes
- classname (str) – the classname of the instance (eg weka.core.SparseInstance).
- weight (float) – the weight of the instance
-
dataset¶ Returns the dataset that this instance belongs to.
Returns: the dataset or None if no dataset set Return type: Instances
-
get_relational_value(index)¶ Returns the relational value at the specified position (0-based).
Parameters: index (int) – the 0-based index of the inernal value Returns: the relational value Return type: Instances
-
get_string_value(index)¶ Returns the string value at the specified position (0-based).
Parameters: index (int) – the 0-based index of the inernal value Returns: the string value Return type: str
-
get_value(index)¶ Returns the internal value at the specified position (0-based).
Parameters: index (int) – the 0-based index of the inernal value Returns: the internal value Return type: float
-
has_class()¶ Returns whether a class attribute is set (convenience method).
Returns: whether a class attribute is currently set Return type: bool
-
has_missing()¶ Returns whether at least one attribute has a missing value.
Returns: whether at least one value is missing Return type: bool
-
is_missing(index)¶ Returns whether the attribute at the specified index is missing.
Parameters: index (int) – the 0-based index of the attribute Returns: whether the value is missing Return type: bool
-
classmethod
missing_value()¶ Returns the numeric value that represents a missing value in Weka (NaN).
Returns: missing value Return type: float
-
num_attributes¶ Returns the number of attributes.
Returns: the numer of attributes Return type: int
-
num_classes¶ Returns the number of class labels.
Returns: the numer of class labels Return type: int
-
set_missing(index)¶ Sets the attribute at the specified index to missing.
Parameters: index (int) – the 0-based index of the attribute
-
set_string_value(index, s)¶ Sets the string value at the specified position (0-based).
Parameters: - index (int) – the 0-based index of the inernal value
- s (str) – the string value
-
set_value(index, value)¶ Sets the internal value at the specified position (0-based).
Parameters: - index (int) – the 0-based index of the attribute
- value (float) – the internal float value to set
-
values¶ Returns the internal values of this instance.
Returns: the values as numpy array Return type: ndarray
-
weight¶ Returns the currently set weight.
Returns: the weight Return type: float
-
-
class
weka.core.dataset.InstanceIterator(data)¶ Bases:
objectIterator for rows in an Instances object.
-
class
weka.core.dataset.InstanceValueIterator(data)¶ Bases:
objectIterator for values in an Instance object.
-
next()¶ Returns the next value from the Instance object.
Returns: the next value, depending on the attribute that can be either a number of a string Return type: str or float
-
-
class
weka.core.dataset.Instances(jobject)¶ Bases:
weka.core.classes.JavaObjectWrapper class for weka.core.Instances.
-
add_instance(inst, index=None)¶ Adds the specified instance to the dataset.
Parameters: - inst (Instance) – the Instance to add
- index (int) – the 0-based index where to add the Instance
-
classmethod
append_instances(inst1, inst2)¶ Merges the two datasets (one-after-the-other). Throws an exception if the datasets aren’t compatible.
Parameters: Returns: the combined dataset
Return type:
-
attribute(index)¶ Returns the specified attribute.
Parameters: index (int) – the 0-based index of the attribute Returns: the attribute Return type: Attribute
-
attribute_by_name(name)¶ Returns the specified attribute, None if not found.
Parameters: name (str) – the name of the attribute Returns: the attribute or None Return type: Attribute
-
attribute_stats(index)¶ Returns the specified attribute statistics.
Parameters: index (int) – the 0-based index of the attribute Returns: the attribute statistics Return type: AttributeStats
-
attributes()¶ Returns an iterator over the attributes.
-
class_attribute¶ Returns the currently set class attribute.
Returns: the class attribute Return type: Attribute
-
class_index¶ Returns the currently set class index (0-based).
Returns: the class index, -1 if not set Return type: int
-
class_is_first()¶ Sets the first attribute as class attribute (convenience method).
-
class_is_last()¶ Sets the last attribute as class attribute (convenience method).
-
compactify()¶ Compactifies the set of instances.
-
classmethod
copy_instances(dataset, from_row=None, num_rows=None)¶ Creates a copy of the Instances. If either from_row or num_rows are None, then all of the data is being copied.
Parameters: - dataset (Instances) – the original dataset
- from_row (int) – the 0-based start index of the rows to copy
- num_rows (int) – the number of rows to copy
Returns: the copy of the data
Return type:
-
classmethod
create_instances(name, atts, capacity)¶ Creates a new Instances.
Parameters: - name (str) – the relation name
- atts (list of Attribute) – the list of attributes to use for the dataset
- capacity (int) – how many data rows to reserve initially (see compactify)
Returns: the dataset
Return type:
-
delete(index=None)¶ Removes either the specified Instance or all Instance objects.
Parameters: index (int) – the 0-based index of the instance to remove
-
delete_attribute(index)¶ Deletes an attribute at the given position.
Parameters: index (int) – the 0-based index of the attribute to remove
-
delete_attribute_type(typ)¶ Deletes all attributes of the given type in the dataset.
Parameters: typ (int) – the attribute type to remove, see weka.core.Attribute Javadoc
-
delete_first_attribute()¶ Deletes the first attribute.
-
delete_last_attribute()¶ Deletes the last attribute.
-
delete_with_missing(index)¶ Deletes all rows that have a missing value at the specified attribute index.
Parameters: index (int) – the attribute index to check for missing attributes
-
equal_headers(inst)¶ Compares this dataset against the given one in terms of attributes.
Parameters: inst (Instances) – the dataset to compare against Returns: None if the same, otherwise an error message Return type: str
-
get_instance(index)¶ Returns the Instance object at the specified location.
Parameters: index (int) – the 0-based index of the instance Returns: the instance Return type: Instance
-
has_class()¶ Returns whether a class attribute is set (convenience method).
Returns: whether a class attribute is currently set Return type: bool
-
insert_attribute(att, index)¶ Inserts the attribute at the specified location.
Parameters: - att (Attribute) – the attribute to insert
- index (int) – the index to insert the attribute at
-
classmethod
merge_instances(inst1, inst2)¶ Merges the two datasets (side-by-side).
Parameters: Returns: the combined dataset
Return type:
-
no_class()¶ Unsets the class attribute (convenience method).
-
num_attributes¶ Returns the number of attributes.
Returns: the number of attributes Return type: int
-
num_instances¶ Returns the number of instances.
Returns: the number of instances Return type: int
-
randomize(random)¶ Randomizes the dataset using the random number generator.
Parameters: random (Random) – the random number generator to use
-
relationname¶ Returns the name of the dataset.
Returns: the name Return type: str
-
set_instance(index, inst)¶ Sets the Instance at the specified location in the dataset.
Parameters: - index (int) – the 0-based index of the instance to replace
- inst (Instance) – the Instance to set
Returns: the instance
Return type:
-
sort(index)¶ Sorts the dataset using the specified attribute index.
Parameters: index (int) – the index of the attribute
-
stratify(folds)¶ Stratifies the data after randomization for nominal class attributes.
Parameters: folds (int) – the number of folds to perform the stratification for
-
classmethod
summary(inst)¶ Generates a summary of the dataset.
Parameters: inst (Instances) – the dataset Returns: the summary Return type: str
-
classmethod
template_instances(dataset, capacity=0)¶ Uses the Instances as template to create an empty dataset.
Parameters: - dataset (Instances) – the original dataset
- capacity (int) – how many data rows to reserve initially (see compactify)
Returns: the empty dataset
Return type:
-
test_cv(num_folds, fold)¶ Generates a test fold for cross-validation.
Parameters: - num_folds (int) – the number of folds of cross-validation, eg 10
- fold (int) – the current fold (0-based)
Returns: the training fold
Return type:
-
train_cv(num_folds, fold, random=None)¶ Generates a training fold for cross-validation.
Parameters: - num_folds (int) – the number of folds of cross-validation, eg 10
- fold (int) – the current fold (0-based)
- random (Random) – the random number generator
Returns: the training fold
Return type:
-
train_test_split(percentage, rnd=None)¶ Generates a train/test split. Creates a copy of the dataset first before applying randomization.
Parameters: - percentage (double) – the percentage split to use (amount to use for training; 0-100)
- rnd (Random) – the random number generator to use, if None the order gets preserved
Returns: the train/test splits
Return type: tuple
-
values(index)¶ Returns the internal values of this attribute from all the instance objects.
Returns: the values as numpy array Return type: list
-
-
class
weka.core.dataset.Stats(jobject)¶ Bases:
weka.core.classes.JavaObjectContainer for numeric attribute stats.
-
count¶ The number of values seen.
Returns: The number of values seen Return type: float
-
max¶ The maximum value seen, or Double.NaN if no values seen.
Returns: The maximum value seen, or Double.NaN if no values seen Return type: float
-
mean¶ The mean of values at the last calculateDerived() call.
Returns: The mean of values at the last calculateDerived() call Return type: float
-
min¶ The minimum value seen, or Double.NaN if no values seen.
Returns: The minimum value seen, or Double.NaN if no values seen Return type: float
-
stddev¶ The std deviation of values at the last calculateDerived() call.
Returns: The std deviation of values at the last calculateDerived() call Return type: float
-
sum¶ The sum of values seen.
Returns: The sum of values seen Return type: float
-
sumsq¶ The sum of values squared seen.
Returns: The sum of values squared seen Return type: float
-
-
weka.core.dataset.create_instances_from_lists(x, y=None, name='data')¶ Allows the generation of an Instances object from a list of lists for X and a list for Y (optional). Data can be numeric, string or bytes. Attributes can be converted to nominal with the weka.filters.unsupervised.attribute.NumericToNominal filter.
Parameters: - x (list of list) – the input variables (row wise)
- y (list) – the output variable (optional)
- name (str) – the name of the dataset
Returns: the generated dataset
Return type:
-
weka.core.dataset.create_instances_from_matrices(x, y=None, name='data')¶ Allows the generation of an Instances object from a 2-dimensional matrix for X and a 1-dimensional matrix for Y (optional). Data can be numeric, string or bytes. Attributes can be converted to nominal with the weka.filters.unsupervised.attribute.NumericToNominal filter.
Parameters: - x (ndarray) – the input variables
- y (ndarray) – the output variable (optional)
- name (str) – the name of the dataset
Returns: the generated dataset
Return type:
-
weka.core.dataset.missing_value()¶ Returns the value that represents missing values in Weka (NaN).
Returns: missing value Return type: float
weka.core.jvm module¶
-
weka.core.jvm.add_bundled_jars()¶ Adds the bundled jars to the JVM’s classpath.
-
weka.core.jvm.add_system_classpath()¶ Adds the system’s classpath to the JVM’s classpath.
-
weka.core.jvm.start(class_path=None, bundled=True, packages=False, system_cp=False, max_heap_size=None)¶ Initializes the javabridge connection (starts up the JVM).
Parameters: - class_path (list) – the additional classpath elements to add
- bundled (bool) – whether to add jars from the “lib” directory
- packages (bool or str) – whether to add jars from Weka packages as well (bool) or an alternative Weka home directory (str)
- system_cp (bool) – whether to add the system classpath as well
- max_heap_size (str) – the maximum heap size (-Xmx parameter, eg 512m or 4g)
-
weka.core.jvm.stop()¶ Kills the JVM.
weka.core.packages module¶
-
class
weka.core.packages.Dependency(jobject)¶ Bases:
weka.core.classes.JavaObjectWrapper for the weka.core.packageManagement.Dependency class.
-
target¶ Returns the target package constraint.
Returns: the package constraint Return type: PackageConstraint
-
-
class
weka.core.packages.Package(jobject)¶ Bases:
weka.core.classes.JavaObjectWrapper for the weka.core.packageManagement.Package class.
-
dependencies¶ Returns the dependencies of the package.
Returns: the list of Dependency objects Return type: list of Dependency
-
install()¶ Installs the package.
-
is_installed¶ Returns whether the package is installed.
Returns: whether installed Return type: bool
-
metadata¶ Returns the meta-data.
Returns: the meta-data dictionary Return type: dict
-
name¶ Returns the name of the package.
Returns: the name Return type: str
-
url¶ Returns the URL of the package.
Returns: the url Return type: str
-
-
class
weka.core.packages.PackageConstraint(jobject)¶ Bases:
weka.core.classes.JavaObjectWrapper for the weka.core.packageManagement.PackageConstraint class.
-
check_constraint(pkge=None, constr=None)¶ Checks the constraints.
Parameters: - pkge (Package) – the package to check
- constr (PackageConstraint) – the package constraint to check
-
-
weka.core.packages.all_packages()¶ Returns a list of all packages.
Returns: the list of packages Return type: list
-
weka.core.packages.available_packages()¶ Returns a list of all packages that aren’t installed yet.
Returns: the list of packages Return type: list
-
weka.core.packages.establish_cache()¶ Establishes the package cache if necessary.
-
weka.core.packages.install_package(pkge, version='Latest')¶ The list of packages to install.
Parameters: - pkge (str) – the name of the repository package, a URL (http/https) or a zip file
- version (str) – in case of the repository packages, the version
Returns: whether successfully installed
Return type: bool
-
weka.core.packages.installed_packages()¶ Returns a list of the installed packages.
Returns: the list of packages Return type: list
-
weka.core.packages.is_installed(name)¶ Checks whether a package with the name is already installed.
Parameters: name (str) – the name of the package Returns: whether the package is installed Return type: bool
-
weka.core.packages.refresh_cache()¶ Refreshes the cache.
-
weka.core.packages.uninstall_package(name)¶ Uninstalls a package.
Parameters: name (str) – the name of the package Returns: whether successfully uninstalled Return type: bool
weka.core.serialization module¶
-
weka.core.serialization.deepcopy(obj)¶ Creates a deep copy of the JavaObject (or derived class) or JB_Object.
Parameters: obj (object) – the object to create a copy of Returns: the copy, None if failed to copy Return type: object
-
weka.core.serialization.read(filename)¶ Reads the serialized object from disk. Caller must wrap object in appropriate Python wrapper class.
Parameters: filename (str) – the file with the serialized object Returns: the JB_Object Return type: JB_Object
-
weka.core.serialization.read_all(filename)¶ Reads the serialized objects from disk. Caller must wrap objects in appropriate Python wrapper classes.
Parameters: filename (str) – the file with the serialized objects Returns: the list of JB_OBjects Return type: list
-
weka.core.serialization.write(filename, jobject)¶ Serializes the object to disk. JavaObject instances get automatically unwrapped.
Parameters: - filename (str) – the file to serialize the object to
- jobject (JB_Object or JavaObject) – the object to serialize
-
weka.core.serialization.write_all(filename, jobjects)¶ Serializes the list of objects to disk. JavaObject instances get automatically unwrapped.
Parameters: - filename (str) – the file to serialize the object to
- jobjects (list) – the list of objects to serialize
weka.core.stemmers module¶
-
class
weka.core.stemmers.Stemmer(classname='weka.core.stemmers.NullStemmer', jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerWrapper class for stemmers.
-
stem(s)¶ Performs stemming on the string.
Parameters: s (str) – the string to stem Returns: the stemmed string Return type: str
-
weka.core.stopwords module¶
-
class
weka.core.stopwords.Stopwords(classname='weka.core.stopwords.Null', jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerWrapper class for stopwords handlers.
-
is_stopword(s)¶ Checks a string whether it is a stopword.
Parameters: s (str) – the string to check Returns: True if a stopword Return type: bool
-
weka.core.tokenizers module¶
-
class
weka.core.tokenizers.TokenIterator(tokenizer)¶ Bases:
objectIterator for string tokens.
-
class
weka.core.tokenizers.Tokenizer(classname='weka.core.tokenizers.AlphabeticTokenizer', jobject=None, options=None)¶ Bases:
weka.core.classes.OptionHandlerWrapper class for tokenizers.
-
tokenize(s)¶ Tokenizes the string.
Parameters: s (str) – the string to tokenize Returns: the iterator Return type: TokenIterator
-
weka.core.types module¶
-
weka.core.types.double_matrix_to_ndarray(m)¶ Turns the Java matrix (2-dim array) of doubles into a numpy 2-dim array.
Parameters: m – the double matrix Type: JB_Object Returns: Numpy array Return type: numpy.darray
-
weka.core.types.double_to_float(d)¶ Turns the Python float into a Java java.lang.Float object.
Parameters: d (float) – the Python float Returns: the Float object Return type: JB_Object
-
weka.core.types.enumeration_to_list(enm)¶ Turns the java.util.Enumeration into a list.
Parameters: enm (JB_Object) – the enumeration to convert Returns: the list Return type: list
-
weka.core.types.string_array_to_list(a)¶ Turns the Java string array into Python unicode string list.
Parameters: a (JB_Object) – the string array to convert Returns: the string list Return type: list
-
weka.core.types.string_list_to_array(l)¶ Turns a Python unicode string list into a Java String array.
Parameters: l – the string list Type: list Return type: java string array Returns: JB_Object
weka.core.version module¶
-
weka.core.version.weka_version()¶ Determines the version of Weka in use.
Returns: the version Return type: str